메뉴 건너뛰기




Volumn 50, Issue 3, 2009, Pages 497-518

Data-driven topo-climatic mapping with machine learning methods

Author keywords

Decision support systems; Downscaling; Environmental modelling; Feature selection; Machine learning; Natural hazards; Support vector machines; Topo climatic mapping

Indexed keywords

ALGORITHM; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; CLIMATE PREDICTION; CONFERENCE PROCEEDING; DIGITAL ELEVATION MODEL; DOWNSCALING; MODELING;

EID: 68549119086     PISSN: 0921030X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11069-008-9339-y     Document Type: Conference Paper
Times cited : (22)

References (44)
  • 1
    • 65549106221 scopus 로고    scopus 로고
    • Climatology of North Fohn in Canton Ticino and Western Lombardy
    • Ambrosetti P, Mariani L, Scioli P (2005) Climatology of North Fohn in Canton Ticino and Western Lombardy. Riv Ital Agrometeorol 2:24-30
    • (2005) Riv Ital Agrometeorol , vol.2 , pp. 24-30
    • Ambrosetti, P.1    Mariani, L.2    Scioli, P.3
  • 2
    • 0020374567 scopus 로고
    • The nocturnal surface inversion and influence of clear air radiative cooling
    • Andre JC, Mahrt L (1982) The nocturnal surface inversion and influence of clear air radiative cooling. J Atmos Sci 39:864-878
    • (1982) J Atmos Sci , vol.39 , pp. 864-878
    • Andre, J.C.1    Mahrt, L.2
  • 3
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68:337, 404
    • (1950) Trans Am Math Soc , vol.68 , Issue.337 , pp. 404
    • Aronszajn, N.1
  • 4
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow predictions: The support vector machines approach
    • Asefa T, Kemblowski M, McKee M, Khalil A (2006) Multi-time scale stream flow predictions: The support vector machines approach. J Hydrol 318(1-4):7-16
    • (2006) J Hydrol , vol.318 , Issue.1-4 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 7
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modelling: The two cultures
    • doi: 10.1214/ss/1009213726
    • Breiman L (2001) Statistical modelling: The two cultures. Stat Sci 16(3):199-231. doi: 10.1214/ss/1009213726
    • (2001) Stat Sci , vol.16 , Issue.3 , pp. 199-231
    • Breiman, L.1
  • 8
    • 30844446670 scopus 로고    scopus 로고
    • Spatial prediction models for landslide hazards: Review, comparison and evaluation
    • Brenning A (2005) Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat Hazards Earth Syst Sci 5(6):853-862
    • (2005) Nat Hazards Earth Syst Sci , vol.5 , Issue.6 , pp. 853-862
    • Brenning, A.1
  • 9
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • doi: 10.1023/A:1009715923555
    • Burges C (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121-167. doi: 10.1023/ A:1009715923555
    • (1998) Data Min Knowl Discov , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.1
  • 11
    • 33645962788 scopus 로고    scopus 로고
    • Introduction to special issue: Earth sciences and environmental applications of computational intelligence
    • doi: 10.1016/j.neunet.2006.01.013
    • Cherkassky V, Krasnopolsky M, Solomatine D, Valdés J (2006) Introduction to special issue: Earth sciences and environmental applications of computational intelligence. Neural Netw 19(2):111. doi: 10.1016/j.neunet.2006.01.013
    • (2006) Neural Netw , vol.19 , Issue.2 , pp. 111
    • Cherkassky, V.1    Krasnopolsky, M.2    Solomatine, D.3    Valdés, J.4
  • 13
    • 0038605565 scopus 로고    scopus 로고
    • Cold-air-pool structure and evolution in a Mountain Basin: Peter Sinks, Utah
    • doi:10.1175/1520-0450(2003)042<0752:CSAEIA>2.0.CO;2
    • Clements CB, Whiteman CD, Horel JD (2003) Cold-air-pool structure and evolution in a Mountain Basin: Peter Sinks, Utah. J Appl Meteorol 42:752-768. doi:10.1175/1520-0450(2003)042<0752:CSAEIA>2.0.CO;2
    • (2003) J Appl Meteorol , vol.42 , pp. 752-768
    • Clements, C.B.1    Whiteman, C.D.2    Horel, J.D.3
  • 14
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273-297
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 16
    • 0028552275 scopus 로고
    • Statistical-topographic model for mapping climatological precipitation over mountainous terrain
    • Daly C, Neilson RP, Phillips DL (1994) Statistical-topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33(2):140-158
    • (1994) J Appl Meteorol , vol.33 , Issue.2 , pp. 140-158
    • Daly, C.1    Neilson, R.P.2    Phillips, D.L.3
  • 19
    • 0002638465 scopus 로고    scopus 로고
    • Primary topographic attributes
    • In: Wilson J, Gallant J (eds) Wiley, Chichester
    • Gallant J, Wilson J (2000) Primary topographic attributes. In: Wilson J, Gallant J (eds) Terrain analysis: Principles and applications. Wiley, Chichester, pp 51-85
    • (2000) Terrain Analysis: Principles and Applications , pp. 51-85
    • Gallant, J.1    Wilson, J.2
  • 20
  • 21
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • doi: 10.1162/153244303322753616
    • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157-1182. doi: 10.1162/153244303322753616
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 22
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • doi: 10.1023/A:1012487302797
    • Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1-3):389-422. doi: 10.1023/A:1012487302797
    • (2002) Mach Learn , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 29
    • 7544244828 scopus 로고    scopus 로고
    • Advanced spatial data analysis and modelling with support vector machines
    • Kanevski M, Pozdnoukhov A, Canu S, Maignan M (2002) Advanced spatial data analysis and modelling with support vector machines. Int J Fuzzy Syst 4(1):606-616
    • (2002) Int J Fuzzy Syst , vol.4 , Issue.1 , pp. 606-616
    • Kanevski, M.1    Pozdnoukhov, A.2    Canu, S.3    Maignan, M.4
  • 30
    • 0242288813 scopus 로고    scopus 로고
    • The support vector machine under test
    • doi: 10.1016/S0925-2312(03)00431-4
    • Meyer D, Leisch F, Hornik K (2003) The support vector machine under test. Neurocomputing 55:169-186. doi: 10.1016/S0925-2312(03)00431-4
    • (2003) Neurocomputing , vol.55 , pp. 169-186
    • Meyer, D.1    Leisch, F.2    Hornik, K.3
  • 31
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • doi: 10.1214/aoms/1177704472
    • Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33:1065-1076. doi: 10.1214/aoms/1177704472
    • (1962) Ann Math Stat , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 32
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • In: Smola AJ, Bartlett P, Scholkopf B, Schuurmans D (eds) MIT Press, Cambridge, MA
    • Platt J (1999) Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: Smola AJ, Bartlett P, Scholkopf B, Schuurmans D (eds) Advances in large margin classiers. MIT Press, Cambridge, MA
    • (1999) Advances in Large Margin Classiers
    • Platt, J.1
  • 33
    • 45749154369 scopus 로고    scopus 로고
    • Support vector regression for automated robust spatial mapping of natural radioactivity
    • Pozdnoukhov A (2005) Support vector regression for automated robust spatial mapping of natural radioactivity. Appl GIS 1(2):21-01-21-10
    • (2005) Appl GIS , vol.1 , Issue.2
    • Pozdnoukhov, A.1
  • 34
    • 58249090365 scopus 로고    scopus 로고
    • Applying machine learning methods to avalanche forecasting
    • Pozdnoukhov A, Purves RS, Kanevski M (2008) Applying machine learning methods to avalanche forecasting. Ann Glaciol 49:107-113
    • (2008) Ann Glaciol , vol.49 , pp. 107-113
    • Pozdnoukhov, A.1    Purves, R.S.2    Kanevski, M.3
  • 37
    • 34249844193 scopus 로고    scopus 로고
    • Hydroinformatics: Computational intelligence and technological developments in water science applications
    • (Special Issue: Hydroinformatics)
    • See L, Solomatine DP, Abrahart R, Toth E (2007) Hydroinformatics: computational intelligence and technological developments in water science applications. J Hydrol Sci 52(3):391-396 (Special Issue: Hydroinformatics)
    • (2007) J Hydrol Sci , vol.52 , Issue.3 , pp. 391-396
    • See, L.1    Solomatine, D.P.2    Abrahart, R.3    Toth, E.4
  • 38
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • doi: 10.1023/B:STCO.0000035301.49549.88
    • Smola A, Scholkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199-222. doi: 10.1023/B:STCO.0000035301.49549.88
    • (2004) Stat Comput , vol.14 , pp. 199-222
    • Smola, A.1    Scholkopf, B.2
  • 39
    • 0026254768 scopus 로고
    • A generalized regression neural network
    • doi: 10.1109/72.97934
    • Specht DF (1991) A generalized regression neural network. IEEE Trans Neural Netw 2:568-576. doi: 10.1109/72.97934
    • (1991) IEEE Trans Neural Netw , vol.2 , pp. 568-576
    • Specht, D.F.1
  • 40
    • 45749104883 scopus 로고    scopus 로고
    • Spatial prediction of radioactivity using general regression neural network
    • Timonin V, Savelieva E (2005) Spatial prediction of radioactivity using general regression neural network. Appl GIS 1(2):19-01-19-14
    • (2005) Appl GIS , vol.1
    • Timonin, V.1    Savelieva, E.2
  • 41
    • 33750018142 scopus 로고    scopus 로고
    • Downscaling of precipitation for climate change scenarios: A support vector machine approach
    • Tripathi S, Srinivas VV, Nanjundiah RS (2006) Downscaling of precipitation for climate change scenarios: A support vector machine approach. J Hydrol 330(3-4):621-640
    • (2006) J Hydrol , vol.330 , Issue.3-4 , pp. 621-640
    • Tripathi, S.1    Srinivas, V.V.2    Nanjundiah, R.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.