메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1789-1792

Using hierarchical hidden Markov models to perform sequence-based classification of protein structure

Author keywords

Classification; Hidden Markov model; Hierarchical hidden Markov model; Protein sequence

Indexed keywords

CLASSIFICATION; EFFECTIVE TOOL; EXPERIMENTAL COMPARISON; EXPERIMENTAL METHODS; HIERARCHICAL HIDDEN MARKOV MODEL; HIERARCHICAL HIDDEN MARKOV MODELS; HIERARCHICAL STRUCTURES; MODEL PARAMETERS; PROTEIN SEQUENCE; PROTEIN SEQUENCES; PROTEIN STRUCTURES; SPATIAL STRUCTURE; STRUCTURAL CLASS;

EID: 78651063979     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICOSP.2010.5656698     Document Type: Conference Paper
Times cited : (6)

References (12)
  • 2
    • 34447289828 scopus 로고    scopus 로고
    • Sequence-based protein prediction using a reduced state-space hidden Markov model
    • C. Lampros, C. Papalukas, and T.P. Exarchos, Y. Goletsis, D.I. Fotiadis, "Sequence-based protein prediction using a reduced state-space hidden Markov model," Comput. Biol. Med., vol. 37,pp.1211-1224, 2007.
    • (2007) Comput. Biol. Med. , vol.37 , pp. 1211-1224
    • Lampros, C.1    Papalukas, C.2    Exarchos, T.P.3    Goletsis, Y.4    Fotiadis, D.I.5
  • 3
    • 0029887381 scopus 로고    scopus 로고
    • Hidden Markov models for sequence analysis: Extension and analysis of the basic method
    • R. Hughey, and A. Krogh, "Hidden Markov models for sequence analysis: extension and analysis of the basic method," CABIOS, vol. 12 pp. 95-107, 1996.
    • (1996) CABIOS , vol.12 , pp. 95-107
    • Hughey, R.1    Krogh, A.2
  • 4
    • 0031743421 scopus 로고    scopus 로고
    • Profile hidden Markov models
    • S.R. Eddy, "Profile hidden Markov models," Bioinformatics, vol.14, pp.755-763,1998.
    • (1998) Bioinformatics , vol.14 , pp. 755-763
    • Eddy, S.R.1
  • 5
    • 0034695414 scopus 로고    scopus 로고
    • Identification of related proteins on family, superfamily and fold level
    • E. Lindahl, and A. Elofsson, "Identification of related proteins on family, superfamily and fold level," J. Mol. Biol., vol. 295, pp. 613-625, 2000.
    • (2000) J. Mol. Biol. , vol.295 , pp. 613-625
    • Lindahl, E.1    Elofsson, A.2
  • 6
    • 67349221838 scopus 로고    scopus 로고
    • A 9-state hidden Markov model using protein secondary structure information for protein fold recognition
    • S. Y.g Lee, J. Y. Lee, K. S. Jung, and K. H. Ryub. "A 9-state hidden Markov model using protein secondary structure information for protein fold recognition," Computers in Biology and Medicine,vol. 39, pp. 527- 534, 2009.
    • (2009) Computers in Biology and Medicine , vol.39 , pp. 527-534
    • Lee, S.Y.G.1    Lee, J.Y.2    Jung, K.S.3    Ryub, K.H.4
  • 9
    • 0020997912 scopus 로고
    • Directory of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features
    • W. Kabsch, and C. Sander, "Directory of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features," Biopolymers, vol. 22, pp. 2577-2637, 1983.
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 11
    • 0032119668 scopus 로고    scopus 로고
    • The hierarchical hidden markov model: Analysis and applications
    • S. Fine, Y.Singer, and N.Tishby: "The Hierarchical Hidden Markov Model: Analysis and Applications," Mach Learn, vol.32, pp.41-62, 1998.
    • (1998) Mach Learn , vol.32 , pp. 41-62
    • Fine, S.1    Singer, Y.2    Tishby, N.3
  • 12
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • C.H.Q. Ding, and I. Dubchak: "Multi-class protein fold recognition using support vector machines and neural networks," Bioinformatics, vol. 17, pp.349-358, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 349-358
    • Ding, C.H.Q.1    Dubchak, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.