-
3
-
-
33846152351
-
-
Kay, E. R.; Leigh, D. A.; Zerbetto, F. Angew. Chem., Int. Ed. 2007, 46, 72-191
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 72-191
-
-
Kay, E.R.1
Leigh, D.A.2
Zerbetto, F.3
-
7
-
-
0034682887
-
-
Collier, C. P.; Mattersteig, G.; Wong, E. W.; Luo, Y.; Beverly, K.; Sampaio, J.; Raymo, F. M.; Stoddart, J. F.; Heath, J. R. Science 2000, 289, 1172-1175
-
(2000)
Science
, vol.289
, pp. 1172-1175
-
-
Collier, C.P.1
Mattersteig, G.2
Wong, E.W.3
Luo, Y.4
Beverly, K.5
Sampaio, J.6
Raymo, F.M.7
Stoddart, J.F.8
Heath, J.R.9
-
8
-
-
10844282802
-
-
Flood, A. H.; Stoddart, J. F.; Steuerman, D. W.; Heath, J. R. Science 2004, 306, 2055-2056
-
(2004)
Science
, vol.306
, pp. 2055-2056
-
-
Flood, A.H.1
Stoddart, J.F.2
Steuerman, D.W.3
Heath, J.R.4
-
9
-
-
21044434147
-
-
Leigh, D. A.; Morales, M. A. F.; Pérez, E. M.; Wong, J. K. Y.; Saiz, C. G.; Slawin, A. M. Z.; Carmichael, A. J.; Haddleton, D. M.; Brouwer, A. M.; Buma, W. J.; Wurpel, G. W. H.; León, S.; Zerbetto, F. Angew. Chem., Int. Ed. 2005, 44, 3062-3067
-
(2005)
Angew. Chem., Int. Ed.
, vol.44
, pp. 3062-3067
-
-
Leigh, D.A.1
Morales, M.A.F.2
Pérez, E.M.3
Wong, J.K.Y.4
Saiz, C.G.5
Slawin, A.M.Z.6
Carmichael, A.J.7
Haddleton, D.M.8
Brouwer, A.M.9
Buma, W.J.10
Wurpel, G.W.H.11
León, S.12
Zerbetto, F.13
-
10
-
-
33646566011
-
-
Hess, H. Science 2006, 312, 860-861
-
(2006)
Science
, vol.312
, pp. 860-861
-
-
Hess, H.1
-
11
-
-
33846491447
-
-
Green, J. E.; Choi, J. W.; Boukai, A.; Bunimovich, Y.; Johnston-Halperin, E.; DeIonno, E.; Luo, Y.; Sheriff, B. A.; Xu, K.; Shin, Y. S.; Tseng, H.-R.; Stoddart, J. F.; Heath, J. R. Nature 2007, 445, 414-417
-
(2007)
Nature
, vol.445
, pp. 414-417
-
-
Green, J.E.1
Choi, J.W.2
Boukai, A.3
Bunimovich, Y.4
Johnston-Halperin, E.5
Deionno, E.6
Luo, Y.7
Sheriff, B.A.8
Xu, K.9
Shin, Y.S.10
Tseng, H.-R.11
Stoddart, J.F.12
Heath, J.R.13
-
13
-
-
64249145393
-
-
Omabegho, T.; Sha, R.; Seeman, N. C. Science 2009, 324, 67-71
-
(2009)
Science
, vol.324
, pp. 67-71
-
-
Omabegho, T.1
Sha, R.2
Seeman, N.C.3
-
14
-
-
1642362624
-
-
Badjić, J. D.; Balzani, V.; Credi, A.; Silvi, S.; Stoddart, J. F. Science 2004, 303, 1845-1849
-
(2004)
Science
, vol.303
, pp. 1845-1849
-
-
Badjić, J.D.1
Balzani, V.2
Credi, A.3
Silvi, S.4
Stoddart, J.F.5
-
15
-
-
26944493106
-
-
Berná, J.; Leigh, D. A.; Lubomska, M.; Mendoza, S. M.; Pérez, E. M.; Rudolf, P.; Teobaldi, G.; Zerbetto, F. Nat. Mater. 2005, 4, 704-710
-
(2005)
Nat. Mater.
, vol.4
, pp. 704-710
-
-
Berná, J.1
Leigh, D.A.2
Lubomska, M.3
Mendoza, S.M.4
Pérez, E.M.5
Rudolf, P.6
Teobaldi, G.7
Zerbetto, F.8
-
16
-
-
33744474087
-
-
Bonnet, S.; Collin, J. P.; Koizumi, M.; Mobian, P.; Sauvage, J.-P. Adv. Mater. 2006, 18, 1239-1250
-
(2006)
Adv. Mater.
, vol.18
, pp. 1239-1250
-
-
Bonnet, S.1
Collin, J.P.2
Koizumi, M.3
Mobian, P.4
Sauvage, J.-P.5
-
17
-
-
77953889686
-
-
Leblond, J.; Gao, H.; Petitjean, A.; Leroux, J.-C. J. Am. Chem. Soc. 2010, 132, 8544-8545
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 8544-8545
-
-
Leblond, J.1
Gao, H.2
Petitjean, A.3
Leroux, J.-C.4
-
18
-
-
33750607284
-
-
Wang, W.; Kaifer, A. E. Angew. Chem., Int. Ed. 2006, 45, 7042-7046
-
(2006)
Angew. Chem., Int. Ed.
, vol.45
, pp. 7042-7046
-
-
Wang, W.1
Kaifer, A.E.2
-
19
-
-
34250615148
-
-
Nijhuis, C. A.; Ravoo, B. J.; Huskens, J.; Reinhoudt, D. N. Coord. Chem. Rev. 2007, 251, 1761-1780
-
(2007)
Coord. Chem. Rev.
, vol.251
, pp. 1761-1780
-
-
Nijhuis, C.A.1
Ravoo, B.J.2
Huskens, J.3
Reinhoudt, D.N.4
-
20
-
-
63449103763
-
-
Juluri, B. K.; Kumar, A. S.; Liu, Y.; Ye, T.; Yang, Y.-W.; Flood, A. H.; Fang, L.; Stoddart, J. F.; Weiss, P. S.; Huang, T. J. ACS Nano 2009, 3, 291-300
-
(2009)
ACS Nano
, vol.3
, pp. 291-300
-
-
Juluri, B.K.1
Kumar, A.S.2
Liu, Y.3
Ye, T.4
Yang, Y.-W.5
Flood, A.H.6
Fang, L.7
Stoddart, J.F.8
Weiss, P.S.9
Huang, T.J.10
-
21
-
-
77953949990
-
-
Parimal, K.; Witlicki, E. H.; Flood, A. H. Angew. Chem., Int. Ed. 2010, 49, 4628-4632
-
(2010)
Angew. Chem., Int. Ed.
, vol.49
, pp. 4628-4632
-
-
Parimal, K.1
Witlicki, E.H.2
Flood, A.H.3
-
22
-
-
0038532620
-
-
Balzani, V.; Credi, A.; Venturi, M. Pure Appl. Chem. 2003, 75, 541-547
-
(2003)
Pure Appl. Chem.
, vol.75
, pp. 541-547
-
-
Balzani, V.1
Credi, A.2
Venturi, M.3
-
23
-
-
18044376803
-
-
Kottas, G. S.; Clarke, L. I.; Horinek, D.; Michl, J. Chem. Rev. 2005, 105, 1281-1376
-
(2005)
Chem. Rev.
, vol.105
, pp. 1281-1376
-
-
Kottas, G.S.1
Clarke, L.I.2
Horinek, D.3
Michl, J.4
-
24
-
-
33644865048
-
-
Eelkema, R.; Pollard, M. M.; Vicario, J.; Katsonis, N.; Ramon, B. S.; Bastiaansen, C. W. M.; Broer, D. J.; Feringa, B. L. Nature 2006, 440, 163
-
(2006)
Nature
, vol.440
, pp. 163
-
-
Eelkema, R.1
Pollard, M.M.2
Vicario, J.3
Katsonis, N.4
Ramon, B.S.5
Bastiaansen, C.W.M.6
Broer, D.J.7
Feringa, B.L.8
-
25
-
-
33645303805
-
-
Muraoka, T.; Kinbara, K.; Aida, T. Nature 2006, 440, 512-515
-
(2006)
Nature
, vol.440
, pp. 512-515
-
-
Muraoka, T.1
Kinbara, K.2
Aida, T.3
-
27
-
-
0013217441
-
-
Wiley-VCH: Weinheim, Germany.
-
Schilwa, M., Ed. Molecular Motors; Wiley-VCH: Weinheim, Germany, 2003.
-
(2003)
Molecular Motors
-
-
Schilwa, M.1
-
28
-
-
0033539139
-
-
Kelly, T. R.; de Silva, H.; Silva, R. A. Nature 1999, 401, 150-152
-
(1999)
Nature
, vol.401
, pp. 150-152
-
-
Kelly, T.R.1
De Silva, H.2
Silva, R.A.3
-
29
-
-
0037829678
-
-
Leigh, D. A.; Wong, J. K. Y.; Dehez, F.; Zerbetto, F. Nature 2003, 424, 174-179
-
(2003)
Nature
, vol.424
, pp. 174-179
-
-
Leigh, D.A.1
Wong, J.K.Y.2
Dehez, F.3
Zerbetto, F.4
-
30
-
-
9444256373
-
-
Hernández, J. V.; Kay, E. R.; Leigh, D. A. Science 2004, 306, 1532-1537
-
(2004)
Science
, vol.306
, pp. 1532-1537
-
-
Hernández, J.V.1
Kay, E.R.2
Leigh, D.A.3
-
31
-
-
26444588140
-
-
Fletcher, S. P.; Dumur, F.; Pollard, M. M.; Feringa, B. L. Science 2005, 310, 80-82
-
(2005)
Science
, vol.310
, pp. 80-82
-
-
Fletcher, S.P.1
Dumur, F.2
Pollard, M.M.3
Feringa, B.L.4
-
34
-
-
33846186868
-
-
Kelly, T. R.; Cai, X.; Damkaci, F.; Panicker, S. B.; Tu, B.; Bushell, S. M.; Cornella, I.; Piggott, M. J.; Salives, R.; Cavero, M.; Zhao, Y.; Jasmin, S. J. Am. Chem. Soc. 2007, 129, 376-386
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 376-386
-
-
Kelly, T.R.1
Cai, X.2
Damkaci, F.3
Panicker, S.B.4
Tu, B.5
Bushell, S.M.6
Cornella, I.7
Piggott, M.J.8
Salives, R.9
Cavero, M.10
Zhao, Y.11
Jasmin, S.12
-
35
-
-
78650891513
-
-
note
-
-1). These differences in isomerization rates can be very important in future applications.
-
-
-
-
36
-
-
76249100833
-
-
Qu, D.-H.; Feringa, B. L. Angew. Chem., Int. Ed. 2010, 49, 1107-1110
-
(2010)
Angew. Chem., Int. Ed.
, vol.49
, pp. 1107-1110
-
-
Qu, D.-H.1
Feringa, B.L.2
-
40
-
-
78650915178
-
-
In the crystal structure of QPH- E, the dihedral angle between the pyridyl ring and the quinolinyl ring is 10.453(48)°, and the torsion angles of N-N=C-C (pyridyl) and C=N-N-C (quinolinyl) are 2.516(279)° and -175.253(161)°, respectively.
-
In the crystal structure of QPH- E, the dihedral angle between the pyridyl ring and the quinolinyl ring is 10.453(48)°, and the torsion angles of N-N=C-C (pyridyl) and C=N-N-C (quinolinyl) are 2.516(279)° and -175.253(161)°, respectively.
-
-
-
-
41
-
-
37049106359
-
-
Vickery, B.; Willey, G. R.; Drew, M. G. B. J. Chem. Soc., Perkin Trans. 2 1981, 1454-1458
-
(1981)
J. Chem. Soc., Perkin Trans. 2
, pp. 1454-1458
-
-
Vickery, B.1
Willey, G.R.2
Drew, M.G.B.3
-
42
-
-
25044474246
-
-
Drew, M. G. B.; Vickery, B.; Willey, G. R. Acta Crystallogr., Sect. B: Struct. Sci. 1982, 38, 1530-1535
-
(1982)
Acta Crystallogr., Sect. B: Struct. Sci.
, vol.38
, pp. 1530-1535
-
-
Drew, M.G.B.1
Vickery, B.2
Willey, G.R.3
-
44
-
-
78650881460
-
-
This ratio is less than what was observed (97:3) for our previously reported naphthyl-based system (see ref 12). This observation might arise from the additional H-bond between the N-H proton and the quinolinyl nitrogen, which can stabilize the Z configuration.
-
This ratio is less than what was observed (97:3) for our previously reported naphthyl-based system (see ref 12). This observation might arise from the additional H-bond between the N-H proton and the quinolinyl nitrogen, which can stabilize the Z configuration.
-
-
-
-
45
-
-
78650868803
-
-
The naphthyl-based system (ref 12) showed that the Z / E isomerization rate is dependent on solvent polarity. This is an indication that the isomerization goes through the rotation mechanism and not the lateral shift one
-
The naphthyl-based system (ref 12) showed that the Z / E isomerization rate is dependent on solvent polarity. This is an indication that the isomerization goes through the rotation mechanism and not the lateral shift one
-
-
-
-
48
-
-
0012436576
-
-
Pichon, R.; Le Saint, J.; Courtot, P. Tetrahedron 1981, 37, 1517-1524
-
(1981)
Tetrahedron
, vol.37
, pp. 1517-1524
-
-
Pichon, R.1
Le Saint, J.2
Courtot, P.3
-
49
-
-
78650869175
-
-
The chemical shift of the N-H proton is influenced by the ring current effects of the naphthyl moiety, in addition to resonance assisted hydrogen-bonding (RAHB). For RAHB, please see
-
The chemical shift of the N-H proton is influenced by the ring current effects of the naphthyl moiety, in addition to resonance assisted hydrogen-bonding (RAHB). For RAHB, please see
-
-
-
-
50
-
-
0001056635
-
-
Bertolasi, V.; Gilli, P.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 1991, 113, 4917-4925
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 4917-4925
-
-
Bertolasi, V.1
Gilli, P.2
Ferretti, V.3
Gilli, G.4
-
51
-
-
0033453233
-
-
Bertolasi, V.; Gilli, P.; Ferretti, V.; Gilli, G.; Vaughan, K. New J. Chem. 1999, 23, 1261-1267
-
(1999)
New J. Chem.
, vol.23
, pp. 1261-1267
-
-
Bertolasi, V.1
Gilli, P.2
Ferretti, V.3
Gilli, G.4
Vaughan, K.5
-
52
-
-
33847663349
-
-
Šimůnek, P.; Svobodová, M.; Bertolasi, V.; Pretto, L.; Lyčka, A.; Macháček, V. New J. Chem. 2007, 31, 429-438
-
(2007)
New J. Chem.
, vol.31
, pp. 429-438
-
-
Šimůnek, P.1
Svobodová, M.2
Bertolasi, V.3
Pretto, L.4
Lyčka, A.5
MacHáček, V.6
-
53
-
-
78650896213
-
-
These effects impede the direct comparison between the N-H chemical shifts of the different QPH isomers. Moreover, they complicate the analysis of the effect that the extra H-bond with the quinolinyl moiety has on the N-H proton, making the direct comparison with the previously published naphthyl-based system (ref 12), very difficult.
-
These effects impede the direct comparison between the N-H chemical shifts of the different QPH isomers. Moreover, they complicate the analysis of the effect that the extra H-bond with the quinolinyl moiety has on the N-H proton, making the direct comparison with the previously published naphthyl-based system (ref 12), very difficult.
-
-
-
-
54
-
-
78650872634
-
-
+ isomerization process is too fast to be monitored by NMR spectroscopy, see ref 12.
-
+ isomerization process is too fast to be monitored by NMR spectroscopy, see ref 12.
-
-
-
-
56
-
-
78650903060
-
-
The chemical shift of the equivalent proton to H8 in the starting material (ethyl-2-pyridylacetate) is 8.49 ppm. This clearly shows that proton H8 in QPH- E is influenced by both RAHB (see ref 17) and the ring current effect of the quinolinyl moiety. The chemical shift of proton H8 in QPH- Z (8.60 ppm) lends further support to this conclusion.
-
The chemical shift of the equivalent proton to H8 in the starting material (ethyl-2-pyridylacetate) is 8.49 ppm. This clearly shows that proton H8 in QPH- E is influenced by both RAHB (see ref 17) and the ring current effect of the quinolinyl moiety. The chemical shift of proton H8 in QPH- Z (8.60 ppm) lends further support to this conclusion.
-
-
-
-
57
-
-
78650915554
-
-
+ shows that the pyridyl nitrogen proton is directed towards the quinolinyl group. This difference in orientation might stem from crystal packing considerations.
-
+ shows that the pyridyl nitrogen proton is directed towards the quinolinyl group. This difference in orientation might stem from crystal packing considerations.
-
-
-
-
58
-
-
78650859162
-
-
+, the dihedral angle between the pyridyl ring and the quinolinyl ring is 2.273(59)°, and the torsion angles of N-N=C-C (pyridyl) and C=N-N-C (quinolinyl) are 179.380(185)° and - 178.483(200)°, respectively.
-
+, the dihedral angle between the pyridyl ring and the quinolinyl ring is 2.273(59)°, and the torsion angles of N-N=C-C (pyridyl) and C=N-N-C (quinolinyl) are 179.380(185)° and - 178.483(200)°, respectively.
-
-
-
-
59
-
-
84989040046
-
-
Barbieri, G.; Benassi, R.; Lazzeretti, P.; Schenetti, L.; Taddei, F. Org. Magn. Resonance 1975, 7, 451-454
-
(1975)
Org. Magn. Resonance
, vol.7
, pp. 451-454
-
-
Barbieri, G.1
Benassi, R.2
Lazzeretti, P.3
Schenetti, L.4
Taddei, F.5
-
61
-
-
78650921907
-
-
note
-
These systems usually adopt a planar structure that increases their π -delocalization, which in turn leads to resonance-assisted hydrogen bonding (ref 17). This behavior, the possibility of forming a six-membered H-bonded ring, in addition to the acquired NMR and UV-vis data, make us conclude that QPH- Z -H 2 2+ has a locked planar conformation as depicted in the figures.
-
-
-
-
63
-
-
78650855772
-
-
The isomerization rate can be enhanced by either heating the sample, or as unpublished preliminary results indicate, by the addition of excess base to the solution that seems to catalyze the Z / E isomerization.
-
The isomerization rate can be enhanced by either heating the sample, or as unpublished preliminary results indicate, by the addition of excess base to the solution that seems to catalyze the Z / E isomerization.
-
-
-
-
64
-
-
64549099389
-
-
3CN are 12.65 and 2.6, respectively
-
3CN are 12.65 and 2.6, respectively: Eckert, F.; Leito, I.; Kaljurand, I.; Kütt, A.; Klamt, A.; Diedenhofen, M. J. Comput. Chem. 2009, 30, 799-810
-
(2009)
J. Comput. Chem.
, vol.30
, pp. 799-810
-
-
Eckert, F.1
Leito, I.2
Kaljurand, I.3
Kütt, A.4
Klamt, A.5
Diedenhofen, M.6
-
65
-
-
78650908668
-
-
We are showing the data with TFA to be consistent with the NMR spectroscopy data, which afforded sharper spectra with TFA than triflic acid.
-
We are showing the data with TFA to be consistent with the NMR spectroscopy data, which afforded sharper spectra with TFA than triflic acid.
-
-
-
-
66
-
-
78650898608
-
-
The first protonation process has isosbestic points at λ = 268, 338, and 405 nm, and the second protonation process has isosbestic points at λ = 284, 213, and 391 nm.
-
The first protonation process has isosbestic points at λ = 268, 338, and 405 nm, and the second protonation process has isosbestic points at λ = 284, 213, and 391 nm.
-
-
-
|