-
1
-
-
18044376803
-
-
(a) Kottas, G. S.; Clarke, L. I.; Horinek, D.; Michl, J. Chem. Rev. 2005, 105, 1281-1376.
-
(2005)
Chem. Rev
, vol.105
, pp. 1281-1376
-
-
Kottas, G.S.1
Clarke, L.I.2
Horinek, D.3
Michl, J.4
-
2
-
-
33846152351
-
-
(b) Kay, E. R.; Leigh, D. A.; Zerbetto, F. Angew. Chem., Int. Ed. 2007, 46, 72-191.
-
(2007)
Angew. Chem., Int. Ed
, vol.46
, pp. 72-191
-
-
Kay, E.R.1
Leigh, D.A.2
Zerbetto, F.3
-
5
-
-
0004240038
-
-
Feringa, B. L. Ed, Wiley-VCH: Weinheim, Germany
-
Molecular Switches; Feringa, B. L. Ed.; Wiley-VCH: Weinheim, Germany, 2001.
-
(2001)
Molecular Switches
-
-
-
6
-
-
3042774398
-
-
For some examples, please see: a
-
For some examples, please see: (a) Badjić, J. D.; Stoddart, J. F. Science 2004, 303, 1845-1849.
-
(2004)
Science
, vol.303
, pp. 1845-1849
-
-
Badjić, J.D.1
Stoddart, J.F.2
-
7
-
-
26944493106
-
-
(b) Berna, J.; Leigh, D. A.; Lubomska, M.; Mendoza, S. M.; Perez, E. M.; Rudolf, P.; Teobaldi, G.; Zerbetto, F. Nat. Mater. 2005, 4, 704-710.
-
(2005)
Nat. Mater
, vol.4
, pp. 704-710
-
-
Berna, J.1
Leigh, D.A.2
Lubomska, M.3
Mendoza, S.M.4
Perez, E.M.5
Rudolf, P.6
Teobaldi, G.7
Zerbetto, F.8
-
8
-
-
33744474087
-
-
(c) Bonnet, S.; Collin, J. P.; Koizumi, M.; Mobian, P.; Sauvage, J.-P. Adv. Mater. 2006, 18, 1239-1250.
-
(2006)
Adv. Mater
, vol.18
, pp. 1239-1250
-
-
Bonnet, S.1
Collin, J.P.2
Koizumi, M.3
Mobian, P.4
Sauvage, J.-P.5
-
9
-
-
0013217441
-
-
Schilwa, M, Ed, Wiley-VCH: Weinheim, Germany
-
Molecular Motors; Schilwa, M., Ed.; Wiley-VCH: Weinheim, Germany, 2003.
-
(2003)
Molecular Motors
-
-
-
10
-
-
73249123869
-
-
By configuration we mean cis-trans isomerism around double bonds. See ref 1b
-
By configuration we mean cis-trans isomerism around double bonds. See ref 1b.
-
-
-
-
12
-
-
84879890340
-
-
Adam, R, Ed, Wiley-VCH: New York
-
Parmerter, S. M. In Organic Reactions; Adam, R., Ed.; Wiley-VCH: New York, 1959; Vol. 10, p 1.
-
(1959)
Organic Reactions
, vol.10
, pp. 1
-
-
Parmerter, S.M.1
-
14
-
-
33947484873
-
-
(a) Yao, H. C. J. Org. Chem. 1964, 29, 2959-2963.
-
(1964)
J. Org. Chem
, vol.29
, pp. 2959-2963
-
-
Yao, H.C.1
-
19
-
-
37049068754
-
-
(f) Bertolasi, V.; Ferretti, V.; Gilli, P.; Issa, Y. M.; Sherif, O. E. J. Chem. Soc., Perkin Trans. 2 1993, 2223-2228.
-
(1993)
J. Chem. Soc., Perkin Trans. 2
, pp. 2223-2228
-
-
Bertolasi, V.1
Ferretti, V.2
Gilli, P.3
Issa, Y.M.4
Sherif, O.E.5
-
20
-
-
0037715341
-
-
For examples of pH activated switches, see: (a) Dolain, C, Maurizot, V, Huc, I. Angew. Chem, Int. Ed. 2003, 42, 2738-2740
-
For examples of pH activated switches, see: (a) Dolain, C.; Maurizot, V.; Huc, I. Angew. Chem., Int. Ed. 2003, 42, 2738-2740.
-
-
-
-
21
-
-
4544353066
-
-
(b) Keaveney, C. M.; Leigh, D. A. Angew. Chem., Int. Ed. 2004, 43, 1222-1224.
-
(2004)
Angew. Chem., Int. Ed
, vol.43
, pp. 1222-1224
-
-
Keaveney, C.M.1
Leigh, D.A.2
-
22
-
-
33746453735
-
-
(c) Cheng, K.-W.; Lai, C.-C.; Chiang, P.-T.; Chiu, S.-H. Chem. Commun. 2006, 2854-2856.
-
(2006)
Chem. Commun
, pp. 2854-2856
-
-
Cheng, K.-W.1
Lai, C.-C.2
Chiang, P.-T.3
Chiu, S.-H.4
-
23
-
-
35948991402
-
-
(d) Silvi, S.; Arduini, A.; Pochini, A.; Secchi, A.; Tomasulo, M.; Raymo, F. M.; Baroncini, M.; Credi, A. J. Am. Chem. Soc. 2007, 129, 13378-13379.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 13378-13379
-
-
Silvi, S.1
Arduini, A.2
Pochini, A.3
Secchi, A.4
Tomasulo, M.5
Raymo, F.M.6
Baroncini, M.7
Credi, A.8
-
24
-
-
48849105889
-
-
(e) Uchiyama, S.; Iwai, K.; de Silva, A. P. Angew. Chem., Int. Ed. 2008, 47, 4667-4669.
-
(2008)
Angew. Chem., Int. Ed
, vol.47
, pp. 4667-4669
-
-
Uchiyama, S.1
Iwai, K.2
de Silva, A.P.3
-
25
-
-
68849088818
-
-
(f) Angelos, S.; Yang, Y.-W.; Khashab, N. M.; Stoddart, J. F.; Zink, J. I. J. Am. Chem. Soc. 2009, 131, 11344-11346.
-
(2009)
J. Am. Chem. Soc
, vol.131
, pp. 11344-11346
-
-
Angelos, S.1
Yang, Y.-W.2
Khashab, N.M.3
Stoddart, J.F.4
Zink, J.I.5
-
26
-
-
73249151483
-
-
3 to the solution. Upon the addition of 0.1 equiv of acid (TFA) only the appropriate amount of isomerization occurred. This rules out the catalytic equilibration process observed in other 1,2,3-tricarbonyl-2- arylhydrazone systems.
-
3 to the solution. Upon the addition of 0.1 equiv of acid (TFA) only the appropriate amount of isomerization occurred. This rules out the catalytic equilibration process observed in other 1,2,3-tricarbonyl-2- arylhydrazone systems.
-
-
-
-
27
-
-
0006213897
-
-
These types of hydrazones usually adopt planar structures. For other examples, see: a
-
These types of hydrazones usually adopt planar structures. For other examples, see: (a) Vickery, B.; Willey, G. R.; Drew, M. G. B. J. Chem. Soc., Perkin Trans. 2 1981, 155-160.
-
(1981)
J. Chem. Soc., Perkin Trans. 2
, pp. 155-160
-
-
Vickery, B.1
Willey, G.R.2
Drew, M.G.B.3
-
28
-
-
25044474246
-
-
(b) Drew, M. G. B.; Vickery, B.; Willey, G. R. Acta Crystallgr., Sect. B 1982, 38, 1530-1535.
-
(1982)
Acta Crystallgr., Sect. B
, vol.38
, pp. 1530-1535
-
-
Drew, M.G.B.1
Vickery, B.2
Willey, G.R.3
-
30
-
-
73249145754
-
-
This isomer ratio remained constant even after heating the sample at 55 °C for 1 h
-
This isomer ratio remained constant even after heating the sample at 55 °C for 1 h.
-
-
-
-
31
-
-
73249115464
-
-
Frisch, M. J.; et al. Gaussian 03, revision B.04; Gaussian Inc.; Wallingford, CT, 2004.
-
Frisch, M. J.; et al. Gaussian 03, revision B.04; Gaussian Inc.; Wallingford, CT, 2004.
-
-
-
-
33
-
-
0345491105
-
-
(b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785-789
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
35
-
-
73249146797
-
-
The reason for this is most probably the unfavorable interaction between proton H8 and the C=N nitrogen lone pair in the other conformation.
-
The reason for this is most probably the unfavorable interaction between proton H8 and the C=N nitrogen lone pair in the other conformation.
-
-
-
-
36
-
-
73249122362
-
-
3H is used as the acid, only 1.0 equiv is needed to fully protonate the pyridine subunit.
-
3H is used as the acid, only 1.0 equiv is needed to fully protonate the pyridine subunit.
-
-
-
-
38
-
-
73249143420
-
-
In ethyl-2-pyridylacetate this same proton resonates at 8.5 ppm and shifts to 8.7 ppm upon protonation with TFA. This indicates that the shift to 8.9 ppm in 1-E has to do with the aromatic ring current. In 1-Z proton H9 resonates at 8.6 ppm (vide infra), which is in agreement with the pyridine ring being further away from the naphthalene core. This is again in agreement with 1-E being the predominant configuration in solution.
-
In ethyl-2-pyridylacetate this same proton resonates at 8.5 ppm and shifts to 8.7 ppm upon protonation with TFA. This indicates that the shift to 8.9 ppm in 1-E has to do with the aromatic ring current. In 1-Z proton H9 resonates at 8.6 ppm (vide infra), which is in agreement with the pyridine ring being further away from the naphthalene core. This is again in agreement with 1-E being the predominant configuration in solution.
-
-
-
-
39
-
-
73249124077
-
-
3N.
-
3N.
-
-
-
-
40
-
-
73249148802
-
-
This complete switching cycle was repeated 5 times in CD3CN, using TFA as acid and Et3N as the base, and the same switching behavior was observed over the 5 switching runs
-
3N as the base, and the same switching behavior was observed over the 5 switching runs.
-
-
-
-
44
-
-
0012436576
-
-
(c) Pichon, R.; Le Saint, J.; Courtot, P. Tetrahedron 1981, 37, 1517-1524.
-
(1981)
Tetrahedron
, vol.37
, pp. 1517-1524
-
-
Pichon, R.1
Le Saint, J.2
Courtot, P.3
|