메뉴 건너뛰기




Volumn 8, Issue 6, 2010, Pages 945-965

Multi-factorial analysis of class prediction error: Estimating optimal number of biomarkers for various classification rules

Author keywords

classification; gene expression; leave one out cross validation; machine learning; Microarrays

Indexed keywords

BIOLOGICAL MARKER;

EID: 78649846620     PISSN: 02197200     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219720010005063     Document Type: Article
Times cited : (13)

References (33)
  • 8
    • 0035977845 scopus 로고    scopus 로고
    • Microarray analysis of hepatotoxins in vitro reveals a correlation between gene expression profiles and mechanisms of toxicity
    • Waring JF, Ciurlionis R, Jolly RA, Heindel M, Ulrich RG, Microarray analysis of hepatotoxins in vitro reveals a correlation between gene expression profiles and mechanisms of toxicity, Toxicol Lett 120:359-368, 2001.
    • (2001) Toxicol Lett , vol.120 , pp. 359-368
    • Waring, J.F.1    Ciurlionis, R.2    Jolly, R.A.3    Heindel, M.4    Ulrich, R.G.5
  • 9
    • 0041421151 scopus 로고    scopus 로고
    • Prediction of clinical drug efficacy by classification of drug-induced genomic expression profiles in vitro
    • Gunther EC, Stone DJ, Gerwien RW, Bento P, Heyes MP, Prediction of clinical drug efficacy by classification of drug-induced genomic expression profiles in vitro, Proc Natl Acad Sci USA 100:9608-9613, 2003.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 9608-9613
    • Gunther, E.C.1    Stone, D.J.2    Gerwien, R.W.3    Bento, P.4    Heyes, M.P.5
  • 12
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method
    • Li L, Weinberg CR, Darden TA, Pedersen LG, Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method, Bioinformatics 17:1131-1142, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 1131-1142
    • Li, L.1    Weinberg, C.R.2    Darden, T.A.3    Pedersen, L.G.4
  • 13
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Díaz-Uriarte R, Alvarez de Andrés S, Gene selection and classification of microarray data using random forest, BMC Bioinformatics 7:1471-2105, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 1471-2105
    • Díaz-Uriarte, R.1    Alvarez De Andrés, S.2
  • 14
    • 0018655616 scopus 로고
    • Determination of optimal dimensionality in statistical pattern classification
    • Raudys ŠJ, Determination of optimal dimensionality in statistical pattern classification, Pattern Recognition 11:263-270, 1979.
    • (1979) Pattern Recognition , vol.11 , pp. 263-270
    • Raudys, Š.J.1
  • 15
    • 10044276174 scopus 로고    scopus 로고
    • Determination of the optimal number of features for quadratic discriminant analysis via the normal approximation to the discriminant distribution
    • Hua J, Xiong Z, Dougherty ER, Determination of the optimal number of features for quadratic discriminant analysis via the normal approximation to the discriminant distribution, Pattern Recognition 38:403-421, 2004.
    • (2004) Pattern Recognition , vol.38 , pp. 403-421
    • Hua, J.1    Xiong, Z.2    Dougherty, E.R.3
  • 16
    • 17544364191 scopus 로고    scopus 로고
    • Optimal number of features as a function of sample size for various classification rules
    • Hua J, Xiong Z, Lowey J, Suh E, Dougherty ER, Optimal number of features as a function of sample size for various classification rules, Bioinformatics 21:1509-1515, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 1509-1515
    • Hua, J.1    Xiong, Z.2    Lowey, J.3    Suh, E.4    Dougherty, E.R.5
  • 19
  • 21
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher RA, The use of multiple measurements in taxonomic problems, Annals of Eugenics 7:179-188, 1936.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 26
    • 70149113077 scopus 로고    scopus 로고
    • R Development Core Team R Foundation for Statistical Computing Vienna, Austria
    • R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing Vienna, Austria, 2009.
    • (2009) R: A Language and Environment for Statistical Computing
  • 27
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on crossvalidation
    • Efron B, Estimating the error rate of a prediction rule: Improvement on crossvalidation, J Am Stat Assoc 78:316-331, 1983.
    • (1983) J Am Stat Assoc , vol.78 , pp. 316-331
    • Efron, B.1
  • 29
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes G, On the mean accuracy of statistical pattern recognizers, IEEE Trans Inform Theory 14:55-63, 1968.
    • (1968) IEEE Trans Inform Theory , vol.14 , pp. 55-63
    • Hughes, G.1
  • 30
    • 33645825183 scopus 로고    scopus 로고
    • Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer
    • Ein-Dor L, Zuk O, Domany E, Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer, Proc Natl Acad Sci 103:5923-5928, 2006.
    • (2006) Proc Natl Acad Sci , vol.103 , pp. 5923-5928
    • Ein-Dor, L.1    Zuk, O.2    Domany, E.3
  • 31
    • 51749123784 scopus 로고    scopus 로고
    • Apparently low reproducibility of true differential expression discoveries in microarray studies
    • Zhang M, Yao C, Guo Z, Zou J, Zhang L, Xiao H, Wang D, Yang D, Gong X, Zhu J et al., Apparently low reproducibility of true differential expression discoveries in microarray studies, Bioinformatics 24:2057-2063, 2008.
    • (2008) Bioinformatics , vol.24 , pp. 2057-2063
    • Zhang, M.1    Yao, C.2    Guo, Z.3    Zou, J.4    Zhang, L.5    Xiao, H.6    Wang, D.7    Yang, D.8    Gong, X.9    Zhu, J.10
  • 32
    • 67649205714 scopus 로고    scopus 로고
    • Evaluating reproducibility of differential expression discoveries in microarray studies by considering correlated molecular changes
    • Zhang M, Zhang L, Zou J, Yao C, Xiao H, Liu Q, Wang J, Wang D, Wang C, Guo Z, Evaluating reproducibility of differential expression discoveries in microarray studies by considering correlated molecular changes, Bioinformatics 25:1662-1668, 2009.
    • (2009) Bioinformatics , vol.25 , pp. 1662-1668
    • Zhang, M.1    Zhang, L.2    Zou, J.3    Yao, C.4    Xiao, H.5    Liu, Q.6    Wang, J.7    Wang, D.8    Wang, C.9    Guo, Z.10
  • 33
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical bayes methods for assessing differential expression in microarray experiments
    • 3:Article
    • Smyth GK, Linear models and empirical Bayes methods for assessing differential expression in microarray experiments, Statistical Applications in Genetics and Molecular Biology 3:Article 3, 2004.
    • (2004) Statistical Applications in Genetics and Molecular Biology , vol.3
    • Smyth, G.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.