-
1
-
-
67349254532
-
-
10.1038/nmat2427
-
X. Feng, V. Marcon, W. Pisula, M. Hansen, J. Kirkpatrick, F. Grozema, D. Andrienko, K. Kremer, and K. Müllen, Nature Mater. 8, 421 (2009). 10.1038/nmat2427
-
(2009)
Nature Mater.
, vol.8
, pp. 421
-
-
Feng, X.1
Marcon, V.2
Pisula, W.3
Hansen, M.4
Kirkpatrick, J.5
Grozema, F.6
Andrienko, D.7
Kremer, K.8
Müllen, K.9
-
2
-
-
72849108485
-
-
10.1021/ar900099h
-
J.-L. Brédas, J. E. Norton, J. Cornil, and V. Coropceanu, Acc. Chem. Res. 42, 1691 (2009). 10.1021/ar900099h
-
(2009)
Acc. Chem. Res.
, vol.42
, pp. 1691
-
-
Brédas, J.-L.1
Norton, J.E.2
Cornil, J.3
Coropceanu, V.4
-
4
-
-
34248334149
-
Charge transport in organic semiconductors
-
DOI 10.1021/cr050140x
-
V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Bredas, Chem. Rev. 107, 926 (2007). 10.1021/cr050140x (Pubitemid 46736532)
-
(2007)
Chemical Reviews
, vol.107
, Issue.4
, pp. 926-952
-
-
Coropceanu, V.1
Cornil, J.2
Da Silva Filho, D.A.3
Olivier, Y.4
Silbey, R.5
Bredas, J.-L.6
-
5
-
-
34547363828
-
Charge mobility of discotic mesophases: A multiscale quantum and classical study
-
DOI 10.1103/PhysRevLett.98.227402
-
J. Kirkpatrick, V. Marcon, J. Nelson, K. Kremer, and D. Andrienko, Phys. Rev. Lett. 98, 227402 (2007). 10.1103/PhysRevLett.98.227402 (Pubitemid 47139721)
-
(2007)
Physical Review Letters
, vol.98
, Issue.22
, pp. 227402
-
-
Kirkpatrick, J.1
Marcon, V.2
Nelson, J.3
Kremer, K.4
Andrienko, D.5
-
6
-
-
77955822350
-
-
10.1021/ja104380c
-
T. Vehoff, B. Baumeier, A. Troisi, and D. Andrienko, J. Am. Chem. Soc. 132, 11702 (2010). 10.1021/ja104380c
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 11702
-
-
Vehoff, T.1
Baumeier, B.2
Troisi, A.3
Andrienko, D.4
-
8
-
-
84954591587
-
-
edited by S. Baranovski (Wiley, Chichester, 10.1002/0470095067
-
Charge Transport in Disordered Solids, edited by, S. Baranovski, (Wiley, Chichester, 2006). 10.1002/0470095067
-
(2006)
Charge Transport in Disordered Solids
-
-
-
10
-
-
68849104812
-
-
10.1021/ja900963v
-
V. Marcon, W. Pisula, J. Dahl, D. W. Breiby, J. Kirkpatrick, S. Patwardhan, F. Grozema, and D. Andrienko, J. Am. Chem. Soc. 131, 11426 (2009). 10.1021/ja900963v
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 11426
-
-
Marcon, V.1
Pisula, W.2
Dahl, J.3
Breiby, D.W.4
Kirkpatrick, J.5
Patwardhan, S.6
Grozema, F.7
Andrienko, D.8
-
11
-
-
70350378429
-
-
10.1021/jp9061169
-
Y. Olivier, L. Muccioli, V. Lemaur, Y. H. Geerts, C. Zannoni, and J. Cornil, J. Phys. Chem. B 113, 14102 (2009). 10.1021/jp9061169
-
(2009)
J. Phys. Chem. B
, vol.113
, pp. 14102
-
-
Olivier, Y.1
Muccioli, L.2
Lemaur, V.3
Geerts, Y.H.4
Zannoni, C.5
Cornil, J.6
-
12
-
-
77951565356
-
-
10.1021/jp101040r
-
E. Di Donato, R. P. Fornari, S. Di Motta, Y. Li, Z. Wang, and F. Negri, J. Phys. Chem. B 114, 5327 (2010). 10.1021/jp101040r
-
(2010)
J. Phys. Chem. B
, vol.114
, pp. 5327
-
-
Di Donato, E.1
Fornari, R.P.2
Di Motta, S.3
Li, Y.4
Wang, Z.5
Negri, F.6
-
13
-
-
41149143620
-
-
10.1039/b719592c
-
J. J. Kwiatkowski, J. Nelson, H. Li, J.-L. Bredas, W. Wenzel, and C. Lennartz, Phys. Chem. Chem. Phys. 10, 1852 (2008). 10.1039/b719592c
-
(2008)
Phys. Chem. Chem. Phys.
, vol.10
, pp. 1852
-
-
Kwiatkowski, J.J.1
Nelson, J.2
Li, H.3
Bredas, J.-L.4
Wenzel, W.5
Lennartz, C.6
-
14
-
-
72849153627
-
-
10.1021/ar900119f
-
J. Nelson, J. Kwiatkowski, J. Kirkpatrick, and J. Frost, Acc. Chem. Res. 42, 1768 (2009). 10.1021/ar900119f
-
(2009)
Acc. Chem. Res.
, vol.42
, pp. 1768
-
-
Nelson, J.1
Kwiatkowski, J.2
Kirkpatrick, J.3
Frost, J.4
-
17
-
-
77954820180
-
-
10.1103/PhysRevB.81.035210
-
N. Vukmirović and L.-W. Wang, Phys. Rev. B 81, 035210 (2010). 10.1103/PhysRevB.81.035210
-
(2010)
Phys. Rev. B
, vol.81
, pp. 035210
-
-
Vukmirović, N.1
Wang, L.-W.2
-
19
-
-
78649758134
-
-
Semiempirical methods, such as ZINDO, are more efficient since they require only precomputed monomer orbitals (Ref.). These methods are, however, not applicable for a large class of, e.g., metal-coordinated, compounds
-
Semiempirical methods, such as ZINDO, are more efficient since they require only precomputed monomer orbitals (Ref.). These methods are, however, not applicable for a large class of, e.g., metal-coordinated, compounds.
-
-
-
-
20
-
-
0141508296
-
-
10.1103/PhysRevB.12.2455
-
H. Scher and E. W. Montroll, Phys. Rev. B 12, 2455 (1975). 10.1103/PhysRevB.12.2455
-
(1975)
Phys. Rev. B
, vol.12
, pp. 2455
-
-
Scher, H.1
Montroll, E.W.2
-
21
-
-
84987131243
-
-
10.1002/pssa.2211400102
-
P. Borsenberger, E. Magin, M. van der Auweraer, and F. de Schryver, Phys. Status Solidi A 140, 9 (1993). 10.1002/pssa.2211400102
-
(1993)
Phys. Status Solidi A
, vol.140
, pp. 9
-
-
Borsenberger, P.1
Magin, E.2
Van Der Auweraer, M.3
De Schryver, F.4
-
23
-
-
0021405833
-
-
10.1080/13642818408246522
-
M. Grünewald, B. Pohlmann, B. Movaghar, and D. Würtz, Philos. Mag. B 49, 341 (1984). 10.1080/13642818408246522
-
(1984)
Philos. Mag. B
, vol.49
, pp. 341
-
-
Grünewald, M.1
Pohlmann, B.2
Movaghar, B.3
Würtz, D.4
-
24
-
-
35949024875
-
-
10.1103/PhysRevB.33.5545
-
B. Movaghar, M. Grünewald, B. Ries, H. Bässler, and D. Würtz, Phys. Rev. B 33, 5545 (1986). 10.1103/PhysRevB.33.5545
-
(1986)
Phys. Rev. B
, vol.33
, pp. 5545
-
-
Movaghar, B.1
Grünewald, M.2
Ries, B.3
Bässler, H.4
Würtz, D.5
-
25
-
-
78649758953
-
-
In experiments, temporal relaxation is normally discussed (Refs.), where mean energy is a function of time and E (t→ ) = E. While this approach is suitable for the interpretation of experimental data and time-of-flight-type simulations, where charges are injected on one and collected on the other side of the sample, in simulations with periodic boundary conditions it is more appropriate to consider mean carrier energy as a function of the total number of hopping sites N.
-
In experiments, temporal relaxation is normally discussed (Refs.), where mean energy is a function of time and E (t → ) = E. While this approach is suitable for the interpretation of experimental data and time-of-flight-type simulations, where charges are injected on one and collected on the other side of the sample, in simulations with periodic boundary conditions it is more appropriate to consider mean carrier energy as a function of the total number of hopping sites N.
-
-
-
-
26
-
-
70350443254
-
-
10.1002/adfm.200901077
-
N. G. Martinelli, M. Savini, L. Muccioli, Y. Olivier, F. Castet, C. Zannoni, D. Beljonne, and J. Cornil, Adv. Funct. Mater. 19, 3254 (2009). 10.1002/adfm.200901077
-
(2009)
Adv. Funct. Mater.
, vol.19
, pp. 3254
-
-
Martinelli, N.G.1
Savini, M.2
Muccioli, L.3
Olivier, Y.4
Castet, F.5
Zannoni, C.6
Beljonne, D.7
Cornil, J.8
-
27
-
-
0034910353
-
-
10.1103/PhysRevB.63.094201
-
H. Cordes, S. D. Baranovskii, K. Kohary, P. Thomas, S. Yamasaki, F. Hensel, and J. H. Wendorff, Phys. Rev. B 63, 094201 (2001). 10.1103/PhysRevB.63. 094201
-
(2001)
Phys. Rev. B
, vol.63
, pp. 094201
-
-
Cordes, H.1
Baranovskii, S.D.2
Kohary, K.3
Thomas, P.4
Yamasaki, S.5
Hensel, F.6
Wendorff, J.H.7
-
28
-
-
0001245096
-
-
10.1007/BF01019492
-
B. Derrida, J. Stat. Phys. 31, 433 (1983). 10.1007/BF01019492
-
(1983)
J. Stat. Phys.
, vol.31
, pp. 433
-
-
Derrida, B.1
-
29
-
-
4043091480
-
-
10.1103/PhysRevB.65.014305
-
K. Seki and M. Tachiya, Phys. Rev. B 65, 014305 (2001). 10.1103/PhysRevB.65.014305
-
(2001)
Phys. Rev. B
, vol.65
, pp. 014305
-
-
Seki, K.1
Tachiya, M.2
-
30
-
-
78649753265
-
-
Since we are not interested in the actual temperature dependence of mobility but in its nondispersive value at a given temperature, the morphology equilibrated at this temperature is kept fixed. To study temperature dependence, e.g., an effect of a glass transition (Ref.), the procedure should be repeated for several, equilibrated at different temperatures, morphologies
-
Since we are not interested in the actual temperature dependence of mobility but in its nondispersive value at a given temperature, the morphology equilibrated at this temperature is kept fixed. To study temperature dependence, e.g., an effect of a glass transition (Ref.), the procedure should be repeated for several, equilibrated at different temperatures, morphologies.
-
-
-
-
33
-
-
0033699781
-
-
10.1016/S0379-6779(99)00358-6
-
S. Naka, H. Okada, Y. Onnagawa, T. Yamaguchi, and T. Tsutsui, Synth. Met. 111-112, 331 (2000). 10.1016/S0379-6779(99)00358-6
-
(2000)
Synth. Met.
, vol.111-112
, pp. 331
-
-
Naka, S.1
Okada, H.2
Onnagawa, Y.3
Yamaguchi, T.4
Tsutsui, T.5
-
34
-
-
78649746703
-
-
note
-
i j, and molecular positions are used in KMC simulations with periodic boundary conditions. Charge carrier mobility is determined as μ = v / F, where v is the averaged projection of the carrier velocity on the direction of the field F. Carrier mobilities are averaged over 100 MD snapshots and six different spatial directions. Simulations were performed using the VOTCA package (Ref.).
-
-
-
-
35
-
-
36249023765
-
An approximate method for calculating transfer integrals based on the ZINDO Hamiltonian
-
DOI 10.1002/qua.21378
-
J. Kirkpatrick, Int. J. Quantum Chem. 108, 51 (2008). 10.1002/qua.21378 (Pubitemid 350134413)
-
(2008)
International Journal of Quantum Chemistry
, vol.108
, Issue.1
, pp. 51-56
-
-
Kirkpatrick, J.1
-
37
-
-
51349106858
-
-
10.1063/1.2969764
-
J. Kirkpatrick, V. Marcon, K. Kremer, J. Nelson, and D. Andrienko, J. Chem. Phys. 129, 094506 (2008). 10.1063/1.2969764
-
(2008)
J. Chem. Phys.
, vol.129
, pp. 094506
-
-
Kirkpatrick, J.1
Marcon, V.2
Kremer, K.3
Nelson, J.4
Andrienko, D.5
-
38
-
-
73949097591
-
-
10.1021/ct900369w
-
V. Rühle, C. Junghans, A. Lukyanov, K. Kremer, and D. Andrienko, J. Chem. Theory Comput. 5, 3211 (2009). 10.1021/ct900369w
-
(2009)
J. Chem. Theory Comput.
, vol.5
, pp. 3211
-
-
Rühle, V.1
Junghans, C.2
Lukyanov, A.3
Kremer, K.4
Andrienko, D.5
|