메뉴 건너뛰기




Volumn 27, Issue 6, 2010, Pages 795-802

The activity of family 11 xylanases at alkaline pH

Author keywords

[No Author keywords available]

Indexed keywords

ALKALINE CONDITIONS; ALKALINE PH; ANIMAL FEED; FAMILY 11; GLYCOSYL HYDROLASES; HIGH PH VALUE; INDUSTRIAL USE; OPTIMAL CONDITIONS; PAPER INDUSTRIES; PH VALUE; PROCESS CONDITION; PULP BLEACHING; REACTION MIXTURE; SMALL MOLECULES; XYLANASES;

EID: 78649707998     PISSN: 18716784     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.nbt.2010.06.004     Document Type: Article
Times cited : (8)

References (33)
  • 1
    • 0028268421 scopus 로고
    • Xylanases in bleaching: from an idea to the industry
    • Viikari L., et al. Xylanases in bleaching: from an idea to the industry. FEMS Microbiol. Rev. 1994, 13:335-350.
    • (1994) FEMS Microbiol. Rev. , vol.13 , pp. 335-350
    • Viikari, L.1
  • 2
    • 0013099437 scopus 로고    scopus 로고
    • Enzyme treatments of pulp
    • TAPPI Press, C.W. Dence, D.W. Reeve (Eds.)
    • Farrell R., et al. Enzyme treatments of pulp. The Technology of Chemical Pulp Bleaching 1996, 365-377. TAPPI Press. C.W. Dence, D.W. Reeve (Eds.).
    • (1996) The Technology of Chemical Pulp Bleaching , pp. 365-377
    • Farrell, R.1
  • 3
    • 0027259353 scopus 로고
    • Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. Strain 41M-1
    • Nakamura S., et al. Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. Strain 41M-1. Appl. Environ. Microbiol. 1993, 59:2311-2316.
    • (1993) Appl. Environ. Microbiol. , vol.59 , pp. 2311-2316
    • Nakamura, S.1
  • 4
    • 0029588275 scopus 로고
    • Alkaline-active xylanase produced by an alkaliphilic Bacillus sp isolated from kraft pulp
    • Yang V.W., et al. Alkaline-active xylanase produced by an alkaliphilic Bacillus sp isolated from kraft pulp. J. Ind. Microbiol. 1995, 15:434-441.
    • (1995) J. Ind. Microbiol. , vol.15 , pp. 434-441
    • Yang, V.W.1
  • 5
    • 0030848704 scopus 로고    scopus 로고
    • Production of an alkaline xylanase by an alkaliphilic Bacillus sp. isolated from an alkaline soda lake
    • Gessesse A., Gashe B.A. Production of an alkaline xylanase by an alkaliphilic Bacillus sp. isolated from an alkaline soda lake. J. Appl. Microbiol. 1997, 83:402-406.
    • (1997) J. Appl. Microbiol. , vol.83 , pp. 402-406
    • Gessesse, A.1    Gashe, B.A.2
  • 6
    • 0035723208 scopus 로고    scopus 로고
    • Directed evolution to produce an alkaliphilic variant from a Neocallimastix patriciarum xylanase
    • Chen Y.-L., et al. Directed evolution to produce an alkaliphilic variant from a Neocallimastix patriciarum xylanase. Can. J. Microbiol. 2001, 47:1088-1094.
    • (2001) Can. J. Microbiol. , vol.47 , pp. 1088-1094
    • Chen, Y.-L.1
  • 7
    • 0035854021 scopus 로고    scopus 로고
    • Degenerate oligonucleotide gene shuffling (DOGS): a method for enhancing the frequency of recombination with family shuffling
    • Gibbs M.D., et al. Degenerate oligonucleotide gene shuffling (DOGS): a method for enhancing the frequency of recombination with family shuffling. Gene 2001, 271:13-20.
    • (2001) Gene , vol.271 , pp. 13-20
    • Gibbs, M.D.1
  • 8
    • 23944468483 scopus 로고    scopus 로고
    • A single amino acid substitution enhances the catalytic activity of Family 11 xylanase at alkaline pH
    • Shibuya H., et al. A single amino acid substitution enhances the catalytic activity of Family 11 xylanase at alkaline pH. Biosci. Biotechnol. Biochem. 2005, 69:1492-1497.
    • (2005) Biosci. Biotechnol. Biochem. , vol.69 , pp. 1492-1497
    • Shibuya, H.1
  • 9
    • 67149131557 scopus 로고    scopus 로고
    • Improvement of alkaliphily of Bacillus alkaline xylanase by introducing amino acid substitutions both on catalytic cleft and protein surface
    • Unemato H., et al. Improvement of alkaliphily of Bacillus alkaline xylanase by introducing amino acid substitutions both on catalytic cleft and protein surface. Biosci. Biotechnol. Biochem. 2009, 73:965-967.
    • (2009) Biosci. Biotechnol. Biochem. , vol.73 , pp. 965-967
    • Unemato, H.1
  • 10
    • 0347294705 scopus 로고    scopus 로고
    • Characterizing the pH-dependent stability and catalytic activity from the alkaliphilic Bacillus agaradhaerens
    • Poon D.K.-Y., et al. Characterizing the pH-dependent stability and catalytic activity from the alkaliphilic Bacillus agaradhaerens. Carbohydrate Res. 2003, 338:415-421.
    • (2003) Carbohydrate Res. , vol.338 , pp. 415-421
    • Poon, D.K.-Y.1
  • 11
    • 78649688619 scopus 로고    scopus 로고
    • Modification of xylanase to improve thermophilicity, alkaliphilicity and thermostability. US Patent 5759840
    • Sung, W.L. et al. (1998) Modification of xylanase to improve thermophilicity, alkaliphilicity and thermostability. US Patent 5759840.
    • (1998)
    • Sung, W.L.1
  • 12
    • 0037164191 scopus 로고    scopus 로고
    • Studies on the key amino acid residues responsible for the alkali-tolerance of the xylanase by site-directed or random mutagenesis
    • Liu X., et al. Studies on the key amino acid residues responsible for the alkali-tolerance of the xylanase by site-directed or random mutagenesis. J. Mol. Catal. B: Enzym. 2002, 18:307-313.
    • (2002) J. Mol. Catal. B: Enzym. , vol.18 , pp. 307-313
    • Liu, X.1
  • 13
    • 32644449005 scopus 로고    scopus 로고
    • Biobleach boosting effect of recombinant xylanase B from the hyperthermophilic Thermotoga maritima on wheat straw pulp
    • Jiang Z.Q., et al. Biobleach boosting effect of recombinant xylanase B from the hyperthermophilic Thermotoga maritima on wheat straw pulp. Appl. Microbiol. Biotechnol. 2006, 70:65-71.
    • (2006) Appl. Microbiol. Biotechnol. , vol.70 , pp. 65-71
    • Jiang, Z.Q.1
  • 14
    • 0026495878 scopus 로고
    • A thermostable extracellular xylanase from alkalophilic Bacillus sp NG-27
    • Gupta N., et al. A thermostable extracellular xylanase from alkalophilic Bacillus sp NG-27. Biotechnol. Lett. 1992, 14:1045-1046.
    • (1992) Biotechnol. Lett. , vol.14 , pp. 1045-1046
    • Gupta, N.1
  • 15
    • 0031834885 scopus 로고    scopus 로고
    • Purification and characterization of an alkaline xylanase from alkaliphilic Micrococcus sp AR-135
    • Gessesse A., Mamo G. Purification and characterization of an alkaline xylanase from alkaliphilic Micrococcus sp AR-135. J. Ind. Microbiol. Biotechnol. 1998, 20:210-214.
    • (1998) J. Ind. Microbiol. Biotechnol. , vol.20 , pp. 210-214
    • Gessesse, A.1    Mamo, G.2
  • 16
    • 13244264678 scopus 로고    scopus 로고
    • Improving the alkaliphilic performances of the Xyl1 xylanase from Streptomyces sp. S38: structural comparison and mutational analysis
    • De Lemos Esteves F., et al. Improving the alkaliphilic performances of the Xyl1 xylanase from Streptomyces sp. S38: structural comparison and mutational analysis. Prot. Sci. 2005, 14:292-302.
    • (2005) Prot. Sci. , vol.14 , pp. 292-302
    • De Lemos Esteves, F.1
  • 17
    • 0032078043 scopus 로고    scopus 로고
    • Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on kraft pulp
    • Morris D.D., et al. Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on kraft pulp. Appl. Environ. Microbiol. 1998, 64:1759-1765.
    • (1998) Appl. Environ. Microbiol. , vol.64 , pp. 1759-1765
    • Morris, D.D.1
  • 18
    • 18044362514 scopus 로고    scopus 로고
    • Degenerate Oligonucleotide Gene Shuffling (DOGS) and Random Drift Mutagenesis (RNDM): two complementary techniques for enzyme evolution
    • Bergquist P.L., et al. Degenerate Oligonucleotide Gene Shuffling (DOGS) and Random Drift Mutagenesis (RNDM): two complementary techniques for enzyme evolution. Biomol. Eng. 2005, 22:63-72.
    • (2005) Biomol. Eng. , vol.22 , pp. 63-72
    • Bergquist, P.L.1
  • 19
    • 0346655148 scopus 로고    scopus 로고
    • Structure and function of a multidomain alkaline xylanase from alkaliphilic Bacillus sp. Strain 41M-1
    • Nakamura S. Structure and function of a multidomain alkaline xylanase from alkaliphilic Bacillus sp. Strain 41M-1. Catal. Surv. Asia 2003, 7:157-164.
    • (2003) Catal. Surv. Asia , vol.7 , pp. 157-164
    • Nakamura, S.1
  • 20
    • 0026537453 scopus 로고
    • Interlaboratory testing methods for assay of xylanase activity
    • Bailey M.J., et al. Interlaboratory testing methods for assay of xylanase activity. J. Biotechnol. 1992, 23:257-270.
    • (1992) J. Biotechnol. , vol.23 , pp. 257-270
    • Bailey, M.J.1
  • 21
    • 33846690417 scopus 로고    scopus 로고
    • An ultrasensitive, continuous assay for xylanase using the fluorogenic substrate 6,8-difluoro-4-methylumbelliferyl B-d-xylobioside
    • Ge Y., et al. An ultrasensitive, continuous assay for xylanase using the fluorogenic substrate 6,8-difluoro-4-methylumbelliferyl B-d-xylobioside. Anal. Biochem. 2007, 362:63-68.
    • (2007) Anal. Biochem. , vol.362 , pp. 63-68
    • Ge, Y.1
  • 22
    • 78649694869 scopus 로고    scopus 로고
    • Alteration of the pH optimum of family 11 xylanases by directed evolution. New Biotechnol. (accepted)
    • Gibbs, M.D. et al. (2010) Alteration of the pH optimum of family 11 xylanases by directed evolution. New Biotechnol. (accepted).
    • (2010)
    • Gibbs, M.D.1
  • 23
    • 37049156324 scopus 로고
    • Universal buffer solutions and the dissociation constant of veronal
    • Britton H.T.S., Robinson R.A. Universal buffer solutions and the dissociation constant of veronal. J. Chem. Soc. 1931, 1456-1462.
    • (1931) J. Chem. Soc. , pp. 1456-1462
    • Britton, H.T.S.1    Robinson, R.A.2
  • 24
    • 0036805879 scopus 로고    scopus 로고
    • Characterization of alkaline thermoactive cellulase-free xylanases from alkalophilic Bacillus (NCL 87-6-10)
    • Balakrishnan H., et al. Characterization of alkaline thermoactive cellulase-free xylanases from alkalophilic Bacillus (NCL 87-6-10). J. Biochem. Mol. Biol. Biophys. 2002, 6:325-334.
    • (2002) J. Biochem. Mol. Biol. Biophys. , vol.6 , pp. 325-334
    • Balakrishnan, H.1
  • 25
    • 0034985962 scopus 로고    scopus 로고
    • Assaying activity and assessing thermostability of hyperthermophilic enzymes
    • Daniel R.M., Danson M.J. Assaying activity and assessing thermostability of hyperthermophilic enzymes. Methods Enzymol. 2001, 334:283-293.
    • (2001) Methods Enzymol. , vol.334 , pp. 283-293
    • Daniel, R.M.1    Danson, M.J.2
  • 26
    • 73849090300 scopus 로고    scopus 로고
    • The molecular basis of the effect of temperature on enzyme activity
    • Daniel R.M., et al. The molecular basis of the effect of temperature on enzyme activity. Biochem. J. 2010, 425:353-360.
    • (2010) Biochem. J. , vol.425 , pp. 353-360
    • Daniel, R.M.1
  • 27
    • 0034716940 scopus 로고    scopus 로고
    • Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase
    • Joshi M.D., et al. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. J. Mol. Biol. 2000, 299:255-279.
    • (2000) J. Mol. Biol. , vol.299 , pp. 255-279
    • Joshi, M.D.1
  • 28
    • 0015609713 scopus 로고
    • Colorimetric and fluorometric carbohydrate determination with p-hydroxybenzoic acid hydrazide
    • Lever M. Colorimetric and fluorometric carbohydrate determination with p-hydroxybenzoic acid hydrazide. Biochem. Med. 1973, 7:274-281.
    • (1973) Biochem. Med. , vol.7 , pp. 274-281
    • Lever, M.1
  • 29
    • 39749114873 scopus 로고    scopus 로고
    • Crystallographic analysis shows substrate binding at the -3 to +1 active-site subsites and at the surface of glycoside hydrolase family 11 endo-1,4-β-xylanases
    • Vandermarliere E., et al. Crystallographic analysis shows substrate binding at the -3 to +1 active-site subsites and at the surface of glycoside hydrolase family 11 endo-1,4-β-xylanases. Biochem. J. 2008, 410:71-79.
    • (2008) Biochem. J. , vol.410 , pp. 71-79
    • Vandermarliere, E.1
  • 30
    • 34248140594 scopus 로고    scopus 로고
    • Alteration of Bacillus subtilis XynA endoxylanase substrate selectivity by site-directed mutagenesis
    • Moers K., et al. Alteration of Bacillus subtilis XynA endoxylanase substrate selectivity by site-directed mutagenesis. Enzyme Microb. Technol. 2007, 41:85-91.
    • (2007) Enzyme Microb. Technol. , vol.41 , pp. 85-91
    • Moers, K.1
  • 31
    • 34548853710 scopus 로고    scopus 로고
    • A secondary xylan-binding site enhances the catalytic activity of a single-domain Family 11 glycoside hydrolase
    • Ludwiczek M.L., et al. A secondary xylan-binding site enhances the catalytic activity of a single-domain Family 11 glycoside hydrolase. J. Mol. Biol. 2007, 373:337-354.
    • (2007) J. Mol. Biol. , vol.373 , pp. 337-354
    • Ludwiczek, M.L.1
  • 32
    • 0027481256 scopus 로고
    • Enzymatic solubilization of fibre-bound and isolated birch xylans
    • Kantelinen A., et al. Enzymatic solubilization of fibre-bound and isolated birch xylans. J. Biotechnol. 1993, 28:219-228.
    • (1993) J. Biotechnol. , vol.28 , pp. 219-228
    • Kantelinen, A.1
  • 33
    • 0028579789 scopus 로고
    • Application of xylanases in the pulp and paper industry
    • Buchert J., et al. Application of xylanases in the pulp and paper industry. Bioresour. Technol. 1994, 50:65-72.
    • (1994) Bioresour. Technol. , vol.50 , pp. 65-72
    • Buchert, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.