메뉴 건너뛰기




Volumn 24, Issue 22, 2010, Pages 3237-3250

Estimating anisotropic aquifer parameters by artificial neural networks

Author keywords

Artificial neural networks; Hydrological parameters; Principal component analysis

Indexed keywords

ACCURATE ESTIMATION; ALLUVIAL FANS; ANALYTICAL SOLUTIONS; AQUIFER PARAMETERS; ARTIFICIAL NEURAL NETWORK; CURVE METHOD; EFFECTIVE PARAMETERS; HYDROLOGICAL PARAMETERS; IN-SITU OBSERVATIONS; MATCH-POINT; MODIFIED METHODS; POROUS MEDIA; PRINCIPAL COMPONENTS; STORAGE COEFFICIENT; SYNTHETIC-TIME; TRAINING SETS; TYPE CURVES; WELL FUNCTION;

EID: 78649509566     PISSN: 08856087     EISSN: 10991085     Source Type: Journal    
DOI: 10.1002/hyp.7750     Document Type: Article
Times cited : (10)

References (35)
  • 1
    • 0026836829 scopus 로고
    • A neural-network approach to the determination of aquifer parameters
    • Aziz AR-A, Wong KV. 1992. A neural-network approach to the determination of aquifer parameters. Ground Water 30(2): 164-166.
    • (1992) Ground Water , vol.30 , Issue.2 , pp. 164-166
    • Aziz, A.-A.1    Wong, K.V.2
  • 2
    • 0037199710 scopus 로고    scopus 로고
    • Aquifer parameters determination for large diameter wells using neural network approach
    • Balkhair KS. 2002. Aquifer parameters determination for large diameter wells using neural network approach. Journal of Hydrology 265(1-4): 118-128.
    • (2002) Journal of Hydrology , vol.265 , Issue.1-4 , pp. 118-128
    • Balkhair, K.S.1
  • 3
    • 1842426595 scopus 로고    scopus 로고
    • Comparison of staticfeedforward and dynamic-feedback neural networks for rainfall-runoff modeling
    • Chiang YM, Chang LC, Chang FJ. 2004. Comparison of staticfeedforward and dynamic-feedback neural networks for rainfall-runoff modeling. Journal of Hydrology 290(3-4): 297-311.
    • (2004) Journal of Hydrology , vol.290 , Issue.3-4 , pp. 297-311
    • Chiang, Y.M.1    Chang, L.C.2    Chang, F.J.3
  • 4
    • 84981760011 scopus 로고
    • A generalized graphical method for evaluating formation constants and summarizing well field history
    • Cooper HH, Jacob CE. 1946. A generalized graphical method for evaluating formation constants and summarizing well field history. Transactions-American Geophysical Union 27: 526-534.
    • (1946) Transactions-American Geophysical Union , vol.27 , pp. 526-534
    • Cooper, H.H.1    Jacob, C.E.2
  • 5
    • 20344369583 scopus 로고    scopus 로고
    • Groundwater level forecasting using artificial neural networks
    • Daliakopoulos IN, Coulibaly P, Tsanis IK. 2005. Groundwater level forecasting using artificial neural networks. Journal of Hydrology 309(1-4): 229-240.
    • (2005) Journal of Hydrology , vol.309 , Issue.1-4 , pp. 229-240
    • Daliakopoulos, I.N.1    Coulibaly, P.2    Tsanis, I.K.3
  • 7
    • 0027010204 scopus 로고
    • Parameter constraints on closed-form soilwater relationships
    • Fuentes C, Haverkamp R, Parlange JY. 1992. Parameter constraints on closed-form soilwater relationships. Journal of Hydrology 134(1-4): 117-142.
    • (1992) Journal of Hydrology , vol.134 , Issue.1-4 , pp. 117-142
    • Fuentes, C.1    Haverkamp, R.2    Parlange, J.Y.3
  • 8
    • 31044452344 scopus 로고    scopus 로고
    • Using neural networks for parameter estimation in ground water
    • Garcia LA, Shigidi A. 2006. Using neural networks for parameter estimation in ground water. Journal of Hydrology 318(1-4): 215-231.
    • (2006) Journal of Hydrology , vol.318 , Issue.1-4 , pp. 215-231
    • Garcia, L.A.1    Shigidi, A.2
  • 9
    • 0004111551 scopus 로고
    • Project report for Los Alamos grant, contract 4-R58-2690R, Department of Mathematics, N. M. Tech., Socorro
    • Gutjahr AL. 1989. Fast Fourier transforms for random field generation. Project report for Los Alamos grant, contract 4-R58-2690R, Department of Mathematics, N. M. Tech., Socorro.
    • (1989) Fast Fourier transforms for random field generation
    • Gutjahr, A.L.1
  • 10
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan MT, Menhaj MB. 1994. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 5(6): 989-993.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 13
    • 33748426038 scopus 로고    scopus 로고
    • Determining anisotropic transmissivity using a simplified Papadopulos method
    • Heilweil VM, Hsieh PA. 2006. Determining anisotropic transmissivity using a simplified Papadopulos method. Ground Water 44(5): 749-753.
    • (2006) Ground Water , vol.44 , Issue.5 , pp. 749-753
    • Heilweil, V.M.1    Hsieh, P.A.2
  • 14
    • 0001952120 scopus 로고
    • Flow of ground water
    • Rouse H (ed.). John Wiley & Sons: New York
    • Jacob CE. 1950. Flow of ground water. In Engineering Hydraulics, Rouse H (ed.). John Wiley & Sons: New York; 321-386.
    • (1950) Engineering Hydraulics , pp. 321-386
    • Jacob, C.E.1
  • 15
    • 41249087480 scopus 로고    scopus 로고
    • Changes in hydrogeological properties of the River Choushui alluvial fan aquifer due to the 1999 Chi-Chi earthquake
    • Jang CS, Liu CW, Chia Y, Cheng LH, Chen YC. 2008. Changes in hydrogeological properties of the River Choushui alluvial fan aquifer due to the 1999 Chi-Chi earthquake, Taiwan. Hydrogeology Journal 16(2): 389-397.
    • (2008) Taiwan. Hydrogeology Journal , vol.16 , Issue.2 , pp. 389-397
    • Jang, C.S.1    Liu, C.W.2    Chia, Y.3    Cheng, L.H.4    Chen, Y.C.5
  • 16
    • 33847065496 scopus 로고    scopus 로고
    • Forecasting aquifer parameters using artificial neural networks
    • Karahan H, Ayvaz MT. 2006. Forecasting aquifer parameters using artificial neural networks. Journal of Porous Media 9(5): 429-444.
    • (2006) Journal of Porous Media , vol.9 , Issue.5 , pp. 429-444
    • Karahan, H.1    Ayvaz, M.T.2
  • 17
    • 48449101338 scopus 로고    scopus 로고
    • Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks
    • Karahan H, Ayvaz MT. 2008. Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks. Hydrogeology Journal 16(5): 817-827.
    • (2008) Hydrogeology Journal , vol.16 , Issue.5 , pp. 817-827
    • Karahan, H.1    Ayvaz, M.T.2
  • 18
    • 0028667489 scopus 로고
    • Neural networks for river flow prediction, Journal of Computing in Civil Engineering
    • Karunanithi N, Grenney WJ, Whitley D, Bovee K. 1994. Neural networks for river flow prediction. Journal of Computing in Civil Engineering, ASCE 8(2): 201-220.
    • (1994) ASCE , vol.8 , Issue.2 , pp. 201-220
    • Karunanithi, N.1    Grenney, W.J.2    Whitley, D.3    Bovee, K.4
  • 19
    • 0344066275 scopus 로고    scopus 로고
    • Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan
    • Kuo YM, Liu CW, Lin KH. 2004. Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan. Water Research 38(1): 148-158.
    • (2004) Water Research , vol.38 , Issue.1 , pp. 148-158
    • Kuo, Y.M.1    Liu, C.W.2    Lin, K.H.3
  • 20
    • 28744432693 scopus 로고    scopus 로고
    • An improved neural network approach to the determination of aquifer parameters
    • Lin GF, Chen GR. 2006. An improved neural network approach to the determination of aquifer parameters. Journal of Hydrology 316(1-4): 281-289.
    • (2006) Journal of Hydrology , vol.316 , Issue.1-4 , pp. 281-289
    • Lin, G.F.1    Chen, G.R.2
  • 21
    • 0032855262 scopus 로고    scopus 로고
    • Empirical comparison of various methods for training feed-forward neural networks for salinity forecasting
    • Maier HR, Dandy GC. 1999. Empirical comparison of various methods for training feed-forward neural networks for salinity forecasting. Water Resources Research 32(8): 2591-2596.
    • (1999) Water Resources Research , vol.32 , Issue.8 , pp. 2591-2596
    • Maier, H.R.1    Dandy, G.C.2
  • 22
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications
    • Maier HR, Dandy GC. 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environmental Modelling and Software 15(1): 101-124.
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 24
    • 0019227492 scopus 로고
    • A statistical approach to the inverse problem of aquifer hydrology.3. Improved solution method and added perspective
    • Neuman SP. 1980. A statistical approach to the inverse problem of aquifer hydrology. 3. Improved solution method and added perspective. Water Resources Research 16(2): 331-346.
    • (1980) Water Resources Research , vol.16 , Issue.2 , pp. 331-346
    • Neuman, S.P.1
  • 25
    • 0344042262 scopus 로고
    • Nonsteady flow to a well in an infinite anisotropic aquifer
    • International Association of Scientific Hydrology: Dubrovnik, Yugoslavia
    • Papadopulos I. 1965. Nonsteady flow to a well in an infinite anisotropic aquifer. In Proceedings of Dubrovnik Symposium on the Hydrology of Fractured Rocks. International Association of Scientific Hydrology: Dubrovnik, Yugoslavia; 21-31.
    • (1965) Proceedings of Dubrovnik Symposium on the Hydrology of Fractured Rocks , pp. 21-31
    • Papadopulos, I.1
  • 26
    • 34249898039 scopus 로고    scopus 로고
    • A simple neural network model for the determination of aquifer parameters
    • Samani N, Gohari-Moghadam M, Safavi AA. 2008. A simple neural network model for the determination of aquifer parameters. Journal of Hydrology 340(1-2): 1-11.
    • (2008) Journal of Hydrology , vol.340 , Issue.1-2 , pp. 1-11
    • Samani, N.1    Gohari-Moghadam, M.2    Safavi, A.A.3
  • 27
    • 0036843660 scopus 로고    scopus 로고
    • Modelling evaporation using an artificial neural network algorithm
    • Sudheer KP, Gosain AK, Rangan D, Saheb SM. 2002. Modelling evaporation using an artificial neural network algorithm. Hydrological Process 16(16): 3189-3202.
    • (2002) Hydrological Process , vol.16 , Issue.16 , pp. 3189-3202
    • Sudheer, K.P.1    Gosain, A.K.2    Rangan, D.3    Saheb, S.M.4
  • 28
    • 84981756619 scopus 로고
    • The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground water storage
    • Theis CV. 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground water storage. Transactions-American Geophysical Union 16: 519-524.
    • (1935) Transactions-American Geophysical Union , vol.16 , pp. 519-524
    • Theis, C.V.1
  • 29
    • 2942692983 scopus 로고
    • Groundwater, geology, movement, chemistry and resources, near Olds
    • Edmonton
    • Toth J. 1966. Groundwater, geology, movement, chemistry and resources, near Olds, Alberta. Research Council of Alberta Bulletin 17: Edmonton: 126.
    • (1966) Alberta. Research Council of Alberta Bulletin , vol.17 , pp. 126
    • Toth, J.1
  • 30
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of short-term rainfall prediction models for real-time flood forecasting
    • Toth E, Brath A, Montanari A. 2000. Comparison of short-term rainfall prediction models for real-time flood forecasting. Journal of Hydrology 239(1-4): 132-147.
    • (2000) Journal of Hydrology , vol.239 , Issue.1-4 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, A.3
  • 32
    • 67650308728 scopus 로고    scopus 로고
    • A two-dimensional inverse model to identify transmissivity in an anisotropic aquifer
    • Wu SC, Tan YC, Chen CH, Lin ST, Ke KY. 2008. A two-dimensional inverse model to identify transmissivity in an anisotropic aquifer. Hydrological Processes 22(26): 5086-5096.
    • (2008) Hydrological Processes , vol.22 , Issue.26 , pp. 5086-5096
    • Wu, S.C.1    Tan, Y.C.2    Chen, C.H.3    Lin, S.T.4    Ke, K.Y.5
  • 35
    • 0346509535 scopus 로고    scopus 로고
    • Approaching the inverse problem of parameter estimation in groundwater models by means of artificial neural networks
    • Zio E. 1997. Approaching the inverse problem of parameter estimation in groundwater models by means of artificial neural networks. Progress in Nuclear Energy 31(3): 303-315.
    • (1997) Progress in Nuclear Energy , vol.31 , Issue.3 , pp. 303-315
    • Zio, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.