메뉴 건너뛰기




Volumn 8, Issue 1, 2011, Pages 266-272

Recursive mahalanobis separability measure for gene subset selection

Author keywords

Gene selection; recursive Mahalanobis measure; regularized Mahalanobis measure.

Indexed keywords

2-D SPACE; CLASS SEPARABILITY MEASURE; COMPUTATIONAL OVERHEADS; EXPERIMENTAL STUDIES; EXPRESSION PROBLEM; FEATURE SELECTION; FEATURE SUBSET; GENE EXPRESSION DATA; GENE SELECTION; HIGH DIMENSIONAL SPACES; MAHALANOBIS; OVER FITTING PROBLEM; RECURSIVE APPROACH; RECURSIVE FEATURE ELIMINATION; REGULARIZATION PARAMETERS; SEARCH PROCEDURES; SEPARABILITY MEASURE; SMALL SAMPLE SIZE; SUBSET SELECTION; TEST DATA; TRAINING DATA;

EID: 78449299753     PISSN: 15455963     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCBB.2010.43     Document Type: Article
Times cited : (14)

References (41)
  • 2
    • 0035184851 scopus 로고    scopus 로고
    • Biomarker identification by feature wrappers
    • M. Xiong, X. Fang, and J. Zhao, "Biomarker Identification by Feature Wrappers", Genome Research, vol. 11, no. 11, pp. 1878-1887, 2001.
    • (2001) Genome Research , vol.11 , Issue.11 , pp. 1878-1887
    • Xiong, M.1    Fang, X.2    Zhao, J.3
  • 3
    • 0036450130 scopus 로고    scopus 로고
    • Gene selection by sequential search wrapper approaches in microarray cancer class prediction
    • I. Inza, B. Sierra, R. Blanco, and P. Larranaga, "Gene Selection by Sequential Search Wrapper Approaches in Microarray Cancer Class Prediction", J. Intelligent and Fuzzy Systems, vol. 12, no. 1, pp. 25-33, 2002.
    • (2002) J. Intelligent and Fuzzy Systems , vol.12 , Issue.1 , pp. 25-33
    • Inza, I.1    Sierra, B.2    Blanco, R.3    Larranaga, P.4
  • 4
    • 0037245772 scopus 로고    scopus 로고
    • Genetic algorithms applied to multi-class prediction for the analysis of gene expression data
    • C. H. Ooi and P. Tan, "Genetic Algorithms Applied to Multi-Class Prediction for the Analysis of Gene Expression Data", Bioinformatics, vol. 19, no. 1, pp. 37-44, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 37-44
    • Ooi, C.H.1    Tan, P.2
  • 5
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • U. M. Braga-Neto and E. R. Dougherty, "Is Cross-Validation Valid for Small-Sample Microarray Classification?", Bioinformatics, vol. 20, no. 3, pp. 374-380, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.3 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 6
    • 33749820670 scopus 로고    scopus 로고
    • The ties problem resulting from counting-based error estimators and its impact on gene section algorithms
    • X. Zhou and K. Z. Mao, "The Ties Problem Resulting from Counting-Based Error Estimators and Its Impact on Gene Section Algorithms", Bioinformatics, vol. 22, no. 20, pp. 2507-2515, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.20 , pp. 2507-2515
    • Zhou, X.1    Mao, K.Z.2
  • 7
    • 0036772522 scopus 로고    scopus 로고
    • Bayesian automatic relevance determination algorithms for classifying gene expression data
    • Y. Li, C. Campbell, and M. Tipping, "Bayesian Automatic Relevance Determination Algorithms for Classifying Gene Expression Data", Bioinformatics, vol. 18, no. 10, pp. 1332-1339, 2002.
    • (2002) Bioinformatics , vol.18 , Issue.10 , pp. 1332-1339
    • Li, Y.1    Campbell, C.2    Tipping, M.3
  • 8
    • 12244265090 scopus 로고    scopus 로고
    • Gene selection: A Bayesian variable selection approach
    • K. E. Lee, N. Sha, E. R. Dougherty, M. Vannucci, and B. K. Mallick, "Gene Selection: A Bayesian Variable Selection Approach", Bioinformatics, vol. 19, no. 1, pp. 90-97, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 90-97
    • Lee, K.E.1    Sha, N.2    Dougherty, E.R.3    Vannucci, M.4    Mallick, B.K.5
  • 9
    • 12344304266 scopus 로고    scopus 로고
    • Gene selection using a two-level hierarchical Bayesian model
    • K. Bae and B. K. Mallick, "Gene Selection Using a Two-Level Hierarchical Bayesian Model", Bioinformatics, vol. 20, no. 18, pp. 3423-3430, 2005.
    • (2005) Bioinformatics , vol.20 , Issue.18 , pp. 3423-3430
    • Bae, K.1    Mallick, B.K.2
  • 10
    • 19544362938 scopus 로고    scopus 로고
    • Bayesian model averaging: Development of an improved multi-class, gene selection and classification tool for microarray data
    • K. Y. Yeung, R. E. Bumgarner, and A. E. Raftery, "Bayesian Model Averaging: Development of an Improved Multi-Class, Gene Selection and Classification Tool for Microarray Data", Bioinformatics, vol. 21, no. 10, pp. 2394-2402, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.10 , pp. 2394-2402
    • Yeung, K.Y.1    Bumgarner, R.E.2    Raftery, A.E.3
  • 11
    • 33748686773 scopus 로고    scopus 로고
    • Bayesian variable selection for the analysis of microarray data with censored outcomes
    • N. Sha, M. G. Tadesse, and M. Vannucci, "Bayesian Variable Selection for the Analysis of Microarray Data with Censored Outcomes", Bioinformatics, vol. 22, no. 18, pp. 2262-2268, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.18 , pp. 2262-2268
    • Sha, N.1    Tadesse, M.G.2    Vannucci, M.3
  • 12
    • 0345327592 scopus 로고    scopus 로고
    • A simple and efficient algorithm for gene selection using sparse logistic regression
    • S. K. Shevade and S. S. Keerthi, "A Simple and Efficient Algorithm for Gene Selection Using Sparse Logistic Regression", Bioinformatics, vol. 19, no. 17, pp. 2246-2253, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2246-2253
    • Shevade, S.K.1    Keerthi, S.S.2
  • 13
    • 21444446838 scopus 로고    scopus 로고
    • Penalized cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data
    • J. Gui and H. Li, "Penalized Cox Regression Analysis in the High-Dimensional and Low-Sample Size Settings, with Applications to Microarray Gene Expression Data", Bioinformatics, vol. 21, no. 13, pp. 3001-3008, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.13 , pp. 3001-3008
    • Gui, J.1    Li, H.2
  • 14
    • 27544442586 scopus 로고    scopus 로고
    • Analysis of recursive gene selection approaches from microarray data
    • L. Fan and Y. Yang, "Analysis of Recursive Gene Selection Approaches from Microarray Data", Bioinformatics, vol. 21, no. 19, pp. 3741-3747, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.19 , pp. 3741-3747
    • Fan, L.1    Yang, Y.2
  • 15
    • 14644433026 scopus 로고    scopus 로고
    • A semiparametric approach for marker gene selection based on gene expression data
    • Z. Guan and H. Zhao, "A Semiparametric Approach for Marker Gene Selection Based on Gene Expression Data", Bioinformatics, vol. 21, no. 4, pp. 529-536, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.4 , pp. 529-536
    • Guan, Z.1    Zhao, H.2
  • 16
    • 33750012146 scopus 로고    scopus 로고
    • Gene selection in cancer classification using sparse logistic regression with Bayesian regularization
    • G. C. Cawley and N. L. C. Talbot, "Gene Selection in Cancer Classification Using Sparse Logistic Regression with Bayesian Regularization", Bioinformatics, vol. 22, no. 19, pp. 2348-2355, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.19 , pp. 2348-2355
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 17
    • 33750415996 scopus 로고    scopus 로고
    • Eigengene-based linear discriminant model for tumor classification using gene expression microarray data
    • R. Shen, D. Ghosh, A. Chinnaiyan, and Z. Meng, "Eigengene-Based Linear Discriminant Model for Tumor Classification Using Gene Expression Microarray Data", Bioinformatics, vol. 22, no. 21, pp. 2635-2642, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.21 , pp. 2635-2642
    • Shen, R.1    Ghosh, D.2    Chinnaiyan, A.3    Meng, Z.4
  • 18
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene Selection for Cancer Classification Using Support Vector Machines", Machine Learning, vol. 46, nos. 1-3, pp. 389-422, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 19
    • 84890447445 scopus 로고    scopus 로고
    • Variable selection using SVM-based criteria
    • A. Rakotomamonjy, "Variable Selection Using SVM-Based Criteria", J. Machine Learning Research, vol. 3, pp. 1357-1370, 2003.
    • (2003) J. Machine Learning Research , vol.3 , pp. 1357-1370
    • Rakotomamonjy, A.1
  • 20
    • 17444368679 scopus 로고    scopus 로고
    • Ls bound based gene selection for DNA microarray data
    • X. Zhou and K. Z. Mao, "Ls Bound Based Gene Selection for DNA Microarray Data", Bioinformatics, vol. 21, no. 8, pp. 1559-1564, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.8 , pp. 1559-1564
    • Zhou, X.1    Mao, K.Z.2
  • 21
    • 30344438839 scopus 로고    scopus 로고
    • Gene selection using support vector machines with non-convex penalty
    • H. H. Zhang, J. Ahn, X. Lin, and C. Park, "Gene Selection Using Support Vector Machines with Non-Convex Penalty", Bioinformatics, vol. 22, no. 1, pp. 88-95, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.1 , pp. 88-95
    • Zhang, H.H.1    Ahn, J.2    Lin, X.3    Park, C.4
  • 22
    • 85030413794 scopus 로고    scopus 로고
    • Development of two-stage svm-rfe gene selection strategy for microarray expression data analysis
    • July-Sept
    • Y. Tang, Y.-Q. Tang, and Z. Huang, "Development of Two-Stage SVM-RFE Gene Selection Strategy for Microarray Expression Data Analysis", IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 4, no. 3, pp. 365-381, July-Sept. 2007.
    • (2007) IEEE/ACM Trans. Computational Biology and Bioinformatics , vol.4 , Issue.3 , pp. 365-381
    • Tang, Y.1    Tang, Y.-Q.2    Huang, Z.3
  • 23
    • 2142758118 scopus 로고    scopus 로고
    • Bolstered error estimation
    • U. Braga-Neto and E. R. Dougherty, "Bolstered Error Estimation", Pattern Recognition, vol. 37, no. 6, pp. 1267-1281, 2004.
    • (2004) Pattern Recognition , vol.37 , Issue.6 , pp. 1267-1281
    • Braga-Neto, U.1    Dougherty, E.R.2
  • 24
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • D. V. Nguyen and D. M. Rocke, "Tumor Classification by Partial Least Squares Using Microarray Gene Expression Data", Bioinformatics, vol. 18, no. 1, pp. 39-50, 2002.
    • (2002) Bioinformatics , vol.18 , Issue.1 , pp. 39-50
    • Nguyen, D.V.1    Rocke, D.M.2
  • 25
    • 84960463485 scopus 로고    scopus 로고
    • Minimum redundancy feature selection for gene expression data
    • Aug
    • C. Ding and H. Peng, "Minimum Redundancy Feature Selection for Gene Expression Data", Proc. IEEE CS Bioinformatics Conf. (CSB'03), pp. 523-529, Aug. 2003.
    • (2003) Proc. IEEE CS Bioinformatics Conf. (CSB'03) , pp. 523-529
    • Ding, C.1    Peng, H.2
  • 27
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • S. Dudoit, J. Fridyand, and T. P. Speed, "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data", J. Am. Statistical Assoc., vol. 97, pp. 77-87, 2002.
    • (2002) J. Am. Statistical Assoc. , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridyand, J.2    Speed, T.P.3
  • 28
    • 2942602999 scopus 로고    scopus 로고
    • Entropy-based gene ranking without selection bias for the predictive classification of microarray data
    • article
    • C. Furlanello, M. Serafini, S. Merler, and G. Jurman, "Entropy-Based Gene Ranking without Selection Bias for the Predictive Classification of Microarray Data", BMC Bioinformatics, vol. 4, article no. 54, 2003.
    • (2003) BMC Bioinformatics , vol.4 , Issue.54
    • Furlanello, C.1    Serafini, M.2    Merler, S.3    Jurman, G.4
  • 29
    • 25444528240 scopus 로고    scopus 로고
    • Entropy-based gene selection for cancer classification using microarray data
    • article
    • X. Liu, A. Krishnan, and A. Mondry, "Entropy-Based Gene Selection for Cancer Classification Using Microarray Data", BMC Bioinformatics, vol. 6, article no. 76, 2005.
    • (2005) BMC Bioinformatics , vol.6 , Issue.76
    • Liu, X.1    Krishnan, A.2    Mondry, A.3
  • 31
    • 34547986205 scopus 로고    scopus 로고
    • Effective gene selection method with small sample sets using gradient-based and point injection techniques
    • July-Sept
    • D. Huang and T. W. Chow, "Effective Gene Selection Method with Small Sample Sets Using Gradient-Based and Point Injection Techniques", IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 4, no. 3, pp. 467-475, July-Sept. 2007.
    • (2007) IEEE/ACM Trans. Computational Biology and Bioinformatics , vol.4 , Issue.3 , pp. 467-475
    • Huang, D.1    Chow, T.W.2
  • 32
    • 33747424762 scopus 로고    scopus 로고
    • Significance of gene ranking for classification of microarray samples
    • July-Sept
    • C. Zhang, X. Lu, and X. Zhang, "Significance of Gene Ranking for Classification of Microarray Samples", IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 3, no. 3, pp. 312-320, July-Sept. 2006.
    • (2006) IEEE/ACM Trans. Computational Biology and Bioinformatics , vol.3 , Issue.3 , pp. 312-320
    • Zhang, C.1    Lu, X.2    Zhang, X.3
  • 33
    • 4043081192 scopus 로고    scopus 로고
    • Data mining and genetic algorithm based gene/SNP selection
    • S. C. Shah and A. Kusiak, "Data Mining and Genetic Algorithm Based Gene/SNP Selection", Artificial Intelligence in Medicine, vol. 31, no. 3, pp. 189-196, 2004.
    • (2004) Artificial Intelligence in Medicine , vol.31 , Issue.3 , pp. 189-196
    • Shah, S.C.1    Kusiak, A.2
  • 34
    • 25444528447 scopus 로고    scopus 로고
    • Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes
    • article
    • T. Jirapech-Umpai and S. Aitken, "Feature Selection and Classification for Microarray Data Analysis: Evolutionary Methods for Identifying Predictive Genes", BMC Bioinformatics, vol. 6, article no. 148, 2005.
    • (2005) BMC Bioinformatics , vol.6 , Issue.148
    • Jirapech-Umpai, T.1    Aitken, S.2
  • 35
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash and H. Liu, "Feature Selection for Classification", Intelligent Data Analysis, vol. 1, pp. 131-156, 1997.
    • (1997) Intelligent Data Analysis , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 37
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • U. Alon, N. Barkai, D. Notterman, K. Gish, S. Ybarra, D. Mack, and A. Levine, "Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays", Proc. Nat'l Academy of Sciences USA, vol. 96, no. 12, pp. 6745-6750, 1999.
    • (1999) Proc. Nat'l Academy of Sciences USA , vol.96 , Issue.12 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.7
  • 40
    • 0031536511 scopus 로고    scopus 로고
    • Improvements on cross-validation: The 632+ bootstrap method
    • B. Efron and R. Tibshirani, "Improvements on Cross-Validation: The 632+ Bootstrap Method", J. Am. Statistical Assoc., vol. 92, no. 438, pp. 548-560, 1997.
    • (1997) J. Am. Statistical Assoc. , vol.92 , Issue.438 , pp. 548-560
    • Efron, B.1    Tibshirani, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.