메뉴 건너뛰기




Volumn 47, Issue 1-4, 2002, Pages 119-143

Unsupervised neural networks for the identification of minimum overcomplete basis in visual data

Author keywords

Multiple cause; Sparse code; Unsupervised

Indexed keywords

CODES (SYMBOLS); FUNCTIONS; GAUSSIAN NOISE (ELECTRONIC); IDENTIFICATION (CONTROL SYSTEMS); VECTORS;

EID: 0036707219     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0925-2312(01)00583-5     Document Type: Review
Times cited : (8)

References (27)
  • 2
    • 0005887693 scopus 로고
    • Curvature-driven smoothing in backpropagation training
    • C.M. Bishop, Curvature-driven smoothing in backpropagation training, IJCNN 2 (1990) 749-752.
    • (1990) IJCNN , vol.2 , pp. 749-752
    • Bishop, C.M.1
  • 4
    • 0032213709 scopus 로고    scopus 로고
    • Constrained PCA techniques for the identification of common factors in data
    • D. Charles, Constrained PCA techniques for the identification of common factors in data, Neurocomputing 22 (1998) 145-156.
    • (1998) Neurocomputing , vol.22 , pp. 145-156
    • Charles, D.1
  • 5
    • 0005819124 scopus 로고    scopus 로고
    • Modelling multiple cause structure using rectification constraints
    • D. Charles, C. Fyfe, Modelling multiple cause structure using rectification constraints, Network: Comput. Neural Systems 9 (1998) 167-182.
    • (1998) Network: Comput. Neural Systems , vol.9 , pp. 167-182
    • Charles, D.1    Fyfe, C.2
  • 6
    • 0013309455 scopus 로고    scopus 로고
    • Unsupervised neural networks for the identification of multiple causes in data
    • Ph.D. Thesis, University of Paisley
    • D. Charles, Unsupervised neural networks for the identification of multiple causes in data, Ph.D. Thesis, University of Paisley, 1999.
    • (1999)
    • Charles, D.1
  • 7
    • 0003958737 scopus 로고
    • Basis pursuit
    • Ph.D. Thesis, Stanford University
    • S.S. Chen, Basis pursuit, Ph.D. Thesis, Stanford University, 1995.
    • (1995)
    • Chen, S.S.1
  • 8
    • 0001179408 scopus 로고
    • Competition and multiple cause models
    • P. Dayan, R. Zemel, Competition and multiple cause models, Neural Comput. 7 (1995) 565-579.
    • (1995) Neural Comput. , vol.7 , pp. 565-579
    • Dayan, P.1    Zemel, R.2
  • 9
    • 0000929221 scopus 로고
    • What is the goal of sensory coding?
    • D. Field, What is the goal of sensory coding?, Neural Comput. 6 (1994) 555:601.
    • (1994) Neural Comput. , vol.6 , pp. 555-601
    • Field, D.1
  • 11
    • 0003469401 scopus 로고
    • Models of sensory coding
    • Ph.D. Thesis, University of Cambridge
    • P. Földiák, Models of sensory coding, Ph.D. Thesis, University of Cambridge, 1992.
    • (1992)
    • Földiák, P.1
  • 13
    • 0000852458 scopus 로고    scopus 로고
    • Development of entropy coding in a recurrent network
    • G. Harpur, R. Pragur, Development of entropy coding in a recurrent network, Network 7 (2) (1996) 277-284.
    • (1996) Network , vol.7 , Issue.2 , pp. 277-284
    • Harpur, G.1    Pragur, R.2
  • 14
    • 0031590130 scopus 로고    scopus 로고
    • Generative models for discovering sparse distributed representations
    • G. Hinton, Z. Ghahramani, Generative models for discovering sparse distributed representations, Philos. Trans. Roy. Soc. Ser. B 352 (1997) 1177-1190.
    • (1997) Philos. Trans. Roy. Soc. Ser. B , vol.352 , pp. 1177-1190
    • Hinton, G.1    Ghahramani, Z.2
  • 15
    • 0842329562 scopus 로고    scopus 로고
    • Hierarchical non-linear factor analysis and topographical maps
    • M.I. Jordan, M.J. Kearns, S.A. Solla (Eds.), MIT Press, Cambridge, MA
    • Z. Ghahramani, G. Hinton, Hierarchical non-linear factor analysis and topographical maps, in: M.I. Jordan, M.J. Kearns, S.A. Solla (Eds.), MIT Press, Cambridge, MA, 1998. Adv. Neural Inform. Process. Systems 10.
    • (1998) Adv. Neural Inform. Process. Systems , pp. 10
    • Ghahramani, Z.1    Hinton, G.2
  • 16
    • 0033114102 scopus 로고    scopus 로고
    • Feature extraction through LOCOCODE
    • S. Hochreiter, J. Schmidhuber, Feature extraction through LOCOCODE, Neural Computation 11 (3) (1999) 679-714.
    • (1999) Neural Computation , vol.11 , Issue.3 , pp. 679-714
    • Hochreiter, S.1    Schmidhuber, J.2
  • 17
    • 33645410496 scopus 로고
    • Receptive fields, binocular interaction and functional architecture in the cats visual cortex
    • D.H. Hubel, T.N. Wiesel, Receptive fields, binocular interaction and functional architecture in the cats visual cortex, J. Physiol. (London) 160 (1962) 106-154.
    • (1962) J. Physiol. (London) , vol.160 , pp. 106-154
    • Hubel, D.H.1    Wiesel, T.N.2
  • 18
    • 0028272776 scopus 로고
    • Representation and separation of signals using non-linear PCA type learning
    • J. Karhunen, J. Joutsensalo, Representation and separation of signals using non-linear PCA type learning, Neural Networks 7 (1994) 113-127.
    • (1994) Neural Networks , vol.7 , pp. 113-127
    • Karhunen, J.1    Joutsensalo, J.2
  • 20
    • 0002399288 scopus 로고
    • Neural networks, principal components and subspaces
    • E. Oja, Neural networks, principal components and subspaces, Int. J. Neural Systems 1 (1989) 61-68.
    • (1989) Int. J. Neural Systems , vol.1 , pp. 61-68
    • Oja, E.1
  • 21
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive-field properties by learning a sparse code for natural images
    • (6583)
    • B. Olshausen, D. Field, Emergence of simple-cell receptive-field properties by learning a sparse code for natural images, Nature 381 (6583) (1996) 607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.1    Field, D.2
  • 22
    • 0010325739 scopus 로고
    • The relative advantages of sparse versus distributed encoding for neuronal networks in the brain
    • E.T. Rolls, A. Treves, The relative advantages of sparse versus distributed encoding for neuronal networks in the brain, Network 1 (1990) 407-442.
    • (1990) Network , vol.1 , pp. 407-442
    • Rolls, E.T.1    Treves, A.2
  • 23
    • 0002656190 scopus 로고
    • Feature discovery by competitive learning
    • D.E. Rumelhart, D. Zipser, Feature discovery by competitive learning, Cognitive Sci. 9 (1) (1985) 75-112.
    • (1985) Cognitive Sci. , vol.9 , Issue.1 , pp. 75-112
    • Rumelhart, D.E.1    Zipser, D.2
  • 24
    • 0024991999 scopus 로고
    • Analysis of the two-dimensional receptive fields learned by the generalized hebbian algorithm in response to random input
    • T.D. Sanger, Analysis of the two-dimensional receptive fields learned by the generalized hebbian algorithm in response to random input, Biol. Cybernet. 63 (1990) 221-228.
    • (1990) Biol. Cybernet. , vol.63 , pp. 221-228
    • Sanger, T.D.1
  • 25
    • 0003040479 scopus 로고
    • A multiple-cause mixture model for unsupervised learning
    • E. Saund, A multiple-cause mixture model for unsupervised learning, Neural Comput. 7 (1995) 51-71.
    • (1995) Neural Comput. , vol.7 , pp. 51-71
    • Saund, E.1
  • 26
    • 0027206958 scopus 로고
    • Least mean square error reconstruction for self-organising neural-nets
    • L. Xu, Least mean square error reconstruction for self-organising neural-nets, Neural Networks 6 (1993) 627-648.
    • (1993) Neural Networks , vol.6 , pp. 627-648
    • Xu, L.1
  • 27
    • 0003762315 scopus 로고
    • A minimum description length framework for unsupervised learning
    • Ph.D. Thesis, Computer Science, University of Toronto, Canada
    • R.S. Zemel, A minimum description length framework for unsupervised learning, Ph.D. Thesis, Computer Science, University of Toronto, Canada, 1993.
    • (1993)
    • Zemel, R.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.