메뉴 건너뛰기




Volumn 12, Issue 3, 2010, Pages 251-261

Prediction of weekly nitrate-N fluctuations in a small agricultural watershed in Illinois

Author keywords

Artificial neural networks; Drinking water; Forecasting; Genetic algorithms; Naive Bayes model; Nitrate N

Indexed keywords


EID: 78149451063     PISSN: 14647141     EISSN: None     Source Type: Journal    
DOI: 10.2166/hydro.2010.064     Document Type: Article
Times cited : (35)

References (49)
  • 1
    • 33845654063 scopus 로고    scopus 로고
    • Hydrologie applications of minimal resource allocation network (mran) algorithm
    • Amenu, G. G., Markus, M., Kumar, P. & Demissie, M. 2007 Hydrologie applications of minimal resource allocation network (MRAN) algorithm. J. Hydrol. Eng. 12 (1), 124-129.
    • (2007) J. Hydrol. Eng. , vol.12 , Issue.1 , pp. 124-129
    • Amenu, G.G.1    Markus, M.2    Kumar, P.3    Demissie, M.4
  • 2
    • 78650599475 scopus 로고    scopus 로고
    • Survey of bio-data analysis from data mining perspective
    • (ed. J. Wang, M. Zaki, H. Toivonen & D. Shasha), Springer-Verlag, Berlin.
    • Bajcsy, P., Han, J., Liu, L. & Young, J. 2004 Survey of bio-data analysis from data mining perspective. In Data Mining Bioinformatics (ed. J. Wang, M. Zaki, H. Toivonen & D. Shasha), pp. 9-39. Springer-Verlag, Berlin.
    • (2004) Data Mining Bioinformatics , pp. 9-39
    • Bajcsy, P.1    Han, J.2    Liu, L.3    Young, J.4
  • 3
    • 77954821796 scopus 로고    scopus 로고
    • Visualization and data mining tools applied to algal biomass prediction in illinois streams. In
    • (ed. P. Gourbesville, J. Cunge, V. Guinot & S.-Y. Liong), Research Publishing Services, Chennai, India.
    • Bajcsy, P., Kooper, R., Marini, L., Clutter, D. & Markus, M. 2006 Visualization and data mining tools applied to algal biomass prediction in Illinois streams. In Hydroinformatics 2006-Proceedings of the 7th International Conference on Hydroinformatics, Nice, France (ed. P. Gourbesville, J. Cunge, V. Guinot & S.-Y. Liong), pp. 926-933. Research Publishing Services, Chennai, India.
    • (2006) Hydroinformatics 2006-proceedings of the 7th International Conference on Hydroinformatics Nice France , pp. 926-933
    • Bajcsy, P.1    Kooper, R.2    Marini, L.3    Clutter, D.4    Markus, M.5
  • 4
    • 30344434613 scopus 로고    scopus 로고
    • Verification of tmi-adjusted rainfall analyses of tropical cyclones at ecmwf using trmm precipitation radar
    • Benedetti, A., Lopez, P., Moreau, E., Bauer, P. & Venugopal, V. 2005 Verification of TMI-adjusted rainfall analyses of tropical cyclones at ECMWF using TRMM precipitation radar. J. Appl. Meteorol. 44 (11), 1677-1690.
    • (2005) J. Appl. Meteorol. , vol.44 , Issue.11 , pp. 1677-1690
    • Benedetti, A.1    Lopez, P.2    Moreau, E.3    Bauer, P.4    Venugopal, V.5
  • 5
    • 0034767364 scopus 로고    scopus 로고
    • Inducing explanatory rules for the prediction of algal blooms by genetic algorithms
    • Bobbin, J. & Recknagel, F. 2001 Inducing explanatory rules for the prediction of algal blooms by genetic algorithms. Environ. Int. 27 (2-3), 237-242.
    • (2001) Environ. Int. , vol.27 , Issue.2-3 , pp. 237-242
    • Bobbin, J.1    Recknagel, F.2
  • 6
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1. Background and methodology
    • Bowden, G. J., Dandy, G. C. & Maier, H. R. 2005 Input determination for neural network models in water resources applications. part 1. background and methodology. J. Hydrol. 301 (1-4), 75-92.
    • (2005) J. Hydrol. , vol.301 , Issue.1-4 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 7
    • 10644225424 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 2. Case study: Forecasting salinity in a river
    • Bowden, G. J., Maier, H. R. & Dandy, G. C. 2005 Input determination for neural network models in water resources applications. part 2. case study: forecasting salinity in a river. J. Hydrol. 301 (1-4), 93-107.
    • (2005) J. Hydrol. , vol.301 , Issue.1-4 , pp. 93-107
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 8
    • 33745337472 scopus 로고    scopus 로고
    • Forecasting chlorine residuals in a water distribution system using a general regression neural network
    • Bowden, G. J., Nixon, J. B., Dandy, G. C., Maier, H. R. & Holmes, M. 2006 Forecasting chlorine residuals in a water distribution system using a general regression neural network. Math. Comput. Model. 44 (5-6), 469-484.
    • (2006) Math. Comput. Model. , vol.44 , Issue.5-6 , pp. 469-484
    • Bowden, G.J.1    Nixon, J.B.2    Dandy, G.C.3    Maier, H.R.4    Holmes, M.5
  • 9
    • 0027063423 scopus 로고
    • The validity of a simple statistical model for estimating fluvial constituent loads: An empirical study involving nutrient loads entering chesapeake bay
    • Cohn, T. A., Caulder, D. L., Gilroy, E. J., Zynjuk, L. D. & Summers, R. M. 1992 The validity of a simple statistical model for estimating fluvial constituent loads: an empirical study involving nutrient loads entering Chesapeake Bay. Water Resour. Res. 28 (9), 2353-2363.
    • (1992) Water Resour. Res. , vol.28 , Issue.9 , pp. 2353-2363
    • Cohn, T.A.1    Caulder, D.L.2    Gilroy, E.J.3    Zynjuk, L.D.4    Summers, R.M.5
  • 10
    • 0006975183 scopus 로고    scopus 로고
    • Method for the identification of explicit polynomial formulae for the friction in turbulent pipe flow
    • Davidson, J. W., Savic, D. A. & Walters, G. A. 1999 Method for the identification of explicit polynomial formulae for the friction in turbulent pipe flow. J. Hydroinf. 1 (2), 115-126.
    • (1999) J. Hydroinf. , vol.1 , Issue.2 , pp. 115-126
    • Davidson, J.W.1    Savic, D.A.2    Walters, G.A.3
  • 11
    • 0033663348 scopus 로고    scopus 로고
    • Approximators for the colebrook-white formula obtained through a hybrid regression method: Computational methods in water resources
    • (ed. L. R. Bentley, J. F. Sykes, C. A. Brebbia, W. G. Gray & G. F. Pinder), Balkema, Rotterdam.
    • Davidson, J. W., Savic, D. A. & Walters, G. A. 2000 Approximators for the Colebrook-White formula obtained through a hybrid regression method: computational methods in water resources. In Computational Methods, Surface Water Systems and Hydrology (ed. L. R. Bentley, J. F. Sykes, C. A. Brebbia, W. G. Gray & G. F. Pinder), Vol. 2, pp. 983-989. Balkema, Rotterdam.
    • (2000) Computational Methods Surface Water Systems and Hydrology , vol.2 , pp. 983-989
    • Davidson, J.W.1    Savic, D.A.2    Walters, G.A.3
  • 12
    • 38849209134 scopus 로고    scopus 로고
    • An investigation on stream temperature analysis based on evolutionary computing
    • Doglioni, A., Giustolisi, O., Savic, D. A. & Webb, B. W. 2008 An investigation on stream temperature analysis based on evolutionary computing. Hydrol. Process. 22 (3), 315-326.
    • (2008) Hydrol. Process. , vol.22 , Issue.3 , pp. 315-326
    • Doglioni, A.1    Giustolisi, O.2    Savic, D.A.3    Webb, B.W.4
  • 13
    • 33746211146 scopus 로고    scopus 로고
    • An operational evaluation of the eta-cmaq air quality forecast model
    • Eder, B., Kang, D., Mathur, R., Yu, S. & Schere, K. 2006 An operational evaluation of the Eta-CMAQ air quality forecast model. Atmos. Environ. 40, 4894-4905.
    • (2006) Atmos. Environ. , vol.40 , pp. 4894-4905
    • Eder, B.1    Kang, D.2    Mathur, R.3    Yu, S.4    Schere, K.5
  • 14
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • French, M. N., Krajewski, W. F. & Cuykendall, R. R. 1992 Rainfall forecasting in space and time using a neural network. J. Hydrol. 137 (1-4), 1-31.
    • (1992) J. Hydrol. , vol.137 , Issue.1-4 , pp. 1-31
    • French, M.N.1    Krajewski, W.F.2    Cuykendall, R.R.3
  • 15
    • 20844456071 scopus 로고    scopus 로고
    • Improving generalization of artificial neural networks in rainfall-runoff modelling
    • Giustolisi, O. & Laucelli, D. 2005 Improving generalization of artificial neural networks in rainfall-runoff modelling. Hydrol. Sci. J. 50 (3), 439-457.
    • (2005) Hydrol. Sci. J. , vol.50 , Issue.3 , pp. 439-457
    • Giustolisi, O.1    Laucelli, D.2
  • 16
    • 33744791952 scopus 로고    scopus 로고
    • A symbolic data-driven technique based on evolutionary polynomial regression
    • Giustolisi, O. & Savic, D. A. 2006 A symbolic data-driven technique based on evolutionary polynomial regression. J. Hydroinf. 8 (3), 207-222.
    • (2006) J. Hydroinf. , vol.8 , Issue.3 , pp. 207-222
    • Giustolisi, O.1    Savic, D.A.2
  • 17
    • 33745024580 scopus 로고    scopus 로고
    • Optimal design of artificial neural networks by a multi-objective strategy: Groundwater level predictions
    • Giustolisi, O. & Simeone, V. 2006 Optimal design of artificial neural networks by a multi-objective strategy: groundwater level predictions. Hydrol Sci. J. 51 (3), 502-523.
    • (2006) Hydrol Sci. J. , vol.51 , Issue.3 , pp. 502-523
    • Giustolisi, O.1    Simeone, V.2
  • 19
    • 39749139462 scopus 로고    scopus 로고
    • An evolutionary multi-objective strategy for the effective management of groundwater resources
    • (doi:10.1029/2006WR005359).
    • Giustolisi, O., Doglioni, A., Savic, D. A. & di Pierro, F. 2008 An evolutionary multi-objective strategy for the effective management of groundwater resources. Water Resour. Res. 44, W01403 (doi:10.1029/2006WR005359).
    • (2008) Water Resour. Res. , vol.44
    • Giustolisi, O.1    Doglioni, A.2    Savic, D.A.3    Di Pierro, F.4
  • 21
    • 0036822611 scopus 로고    scopus 로고
    • Uncertainty of nitrate-n load computations for agricultural watersheds
    • Guo, Y., Markus, M. & Demissie, M. 2002 Uncertainty of nitrate-N load computations for agricultural watersheds. Water Resour. Res. 38 (10), 3-1-3-12.
    • (2002) Water Resour. Res. , vol.38 , Issue.10 , pp. 31-312
    • Guo, Y.1    Markus, M.2    Demissie, M.3
  • 22
    • 0141626466 scopus 로고    scopus 로고
    • Thunderstorm predictors and their forecast skill for the netherlands
    • Haklander, A. J. & Van Delden, A. 2003 Thunderstorm predictors and their forecast skill for The Netherlands. Atmos. Res. 67 (8), 273-299.
    • (2003) Atmos. Res. , vol.67 , Issue.8 , pp. 273-299
    • Haklander, A.J.1    Van Delden, A.2
  • 23
    • 0033372061 scopus 로고    scopus 로고
    • Classification of hydrologically homogeneous regions
    • Hall, M. J. & Minns, A. W. 1999 Classification of hydrologically homogeneous regions. Hydrol. Sci. J. 44 (5), 693-704.
    • (1999) Hydrol. Sci. J. , vol.44 , Issue.5 , pp. 693-704
    • Hall, M.J.1    Minns, A.W.2
  • 24
    • 39549114408 scopus 로고    scopus 로고
    • Development of integrated discharge and sediment rating relation using a compound neural network
    • Jain, S. K. 2008 Development of integrated discharge and sediment rating relation using a compound neural network. J. Hydrol. Eng. 13 (3), 124-131.
    • (2008) J. Hydrol. Eng. , vol.13 , Issue.3 , pp. 124-131
    • Jain, S.K.1
  • 26
    • 0023855839 scopus 로고
    • An introduction to neural computing
    • Kohonen, T. 1988 An introduction to neural computing. Neural Netw. 1, 3-16.
    • (1988) Neural Netw , vol.1 , pp. 3-16
    • Kohonen, T.1
  • 29
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Maier, H. R. & Dandy, G. C. 1996 The use of artificial neural networks for the prediction of water quality parameters. Water Resour. Res. 32, 1013-1022.
    • (1996) Water Resour. Res. , vol.32 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 31
    • 78149418061 scopus 로고    scopus 로고
    • Artificial neural networks. In
    • (ed. P. Kumar, J. Alameda, P. Bajcsy, M. Folk & M. Markus), CRC Press, Boca Raton, FL.
    • Markus, M. 2006 Artificial neural networks. In Hydroinformatics: Data Integrative Approaches in Computation, Analysis, and Modeling (ed. P. Kumar, J. Alameda, P. Bajcsy, M. Folk & M. Markus), pp. 411-438. CRC Press, Boca Raton, FL.
    • (2006) Hydroinformatics Data Integrative Approaches in Computation Analysis and Modeling , pp. 411-438
    • Markus, M.1
  • 32
    • 0037339103 scopus 로고    scopus 로고
    • Uncertainty of weekly nitrate-nitrogen forecasts using artificial neural networks
    • Markus, M., Tsai, C. W.-S. & Demissie, M. 2003 Uncertainty of weekly nitrate-nitrogen forecasts using artificial neural networks. J. Environ. Eng. 129 (3), 267-274.
    • (2003) J. Environ. Eng. , vol.129 , Issue.3 , pp. 267-274
    • Markus, M.1    Tsai, C.W.-S.2    Demissie, M.3
  • 33
    • 0003876171 scopus 로고    scopus 로고
    • Mathworks, Inc., Available at, (August 14, 2008)
    • Mathworks, Inc. 2007 MATLAB-The Language of Technical Computing. Available at: http://www.mathworks.com/products/matlab (August 14, 2008).
    • (2007) MATLAB-the Language of Technical Computing
  • 34
    • 10244277983 scopus 로고    scopus 로고
    • Use of qualitative and quantitative information in neural networks for assessing agricultural chemical contamination of domestic wells
    • Mishra, A., Ray, C. & Kolpin, D. W. 2004 Use of qualitative and quantitative information in neural networks for assessing agricultural chemical contamination of domestic wells. J. Hydrol. Eng. 9 (6), 502-511.
    • (2004) J. Hydrol. Eng. , vol.9 , Issue.6 , pp. 502-511
    • Mishra, A.1    Ray, C.2    Kolpin, D.W.3
  • 35
    • 3142538909 scopus 로고    scopus 로고
    • Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
    • Moradkhani, H., Hsu, K.-L., Gupta, H. V. & Sorooshian, S. 2004 Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. J. Hydrol. 295 (1-4), 246-262.
    • (2004) J. Hydrol. , vol.295 , Issue.1-4 , pp. 246-262
    • Moradkhani, H.1    Hsu, K.-L.2    Gupta, H.V.3    Sorooshian, S.4
  • 36
    • 27744586803 scopus 로고    scopus 로고
    • Genetic programming for analysis and real-time prediction of coastal algal blooms
    • Muttil, N. & Lee, J. H. W. 2005 Genetic programming for analysis and real-time prediction of coastal algal blooms. Ecol. Modell. 189 (3-4), 363-376.
    • (2005) Ecol. Modell. , vol.189 , Issue.3-4 , pp. 363-376
    • Muttil, N.1    Lee, J.H.W.2
  • 37
    • 0036698116 scopus 로고    scopus 로고
    • Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks
    • Ochoa-Rivera, J. C., García-Bartual, R. & Andreu, J. 2002 Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks. Hydrol. Earth Syst. Sci. 6 (4), 641-654.
    • (2002) Hydrol. Earth Syst. Sci. , vol.6 , Issue.4 , pp. 641-654
    • Ochoa-Rivera, J.C.1    García-Bartual, R.2    Andreu, J.3
  • 38
    • 33847229800 scopus 로고    scopus 로고
    • Influence of inflows modeling on management simulation of water resources system
    • Ochoa-Rivera, J. C., Andreu, J. & García-Bartual, R. 2007 Influence of inflows modeling on management simulation of water resources system. J. Water Resour. Plann. Manage. 133 (2), 106-116.
    • (2007) J. Water Resour. Plann. Manage. , vol.133 , Issue.2 , pp. 106-116
    • Ochoa-Rivera, J.C.1    Andreu, J.2    García-Bartual, R.3
  • 39
    • 3843083955 scopus 로고    scopus 로고
    • Augmenting naive bayes classifiers with statistical language models
    • Peng, F., Schuurmans, D. & Wang, S. 2004 Augmenting naive Bayes classifiers with statistical language models. Inf. Retr. 7 (3-4), 317-345.
    • (2004) Inf. Retr. , vol.7 , Issue.3-4 , pp. 317-345
    • Peng, F.1    Schuurmans, D.2    Wang, S.3
  • 41
    • 0001857840 scopus 로고    scopus 로고
    • Streamflow forecasting based on artificial neural networks
    • (ed. R. S. Govindaraju & A. R. Rao), Kluwer, Amsterdam.
    • Salas, J. D., Markus, M. & Tokar, A. S. 2000 Streamflow forecasting based on artificial neural networks. In Artificial Neural Networks in Hydrology (ed. R. S. Govindaraju & A. R. Rao), pp. 23-51. Kluwer, Amsterdam.
    • (2000) Artificial Neural Networks in Hydrology , pp. 23-51
    • Salas, J.D.1    Markus, M.2    Tokar, A.S.3
  • 42
    • 0742323231 scopus 로고    scopus 로고
    • Neural networks for predicting nitrate-nitrogen in drainage water
    • Sharma, V., Negi, S., Rudra, R. & Yang, S. 2003 Neural networks for predicting nitrate-nitrogen in drainage water. Agric. Water Manage. 63 (3), 169-183.
    • (2003) Agric. Water Manage. , vol.63 , Issue.3 , pp. 169-183
    • Sharma, V.1    Negi, S.2    Rudra, R.3    Yang, S.4
  • 43
    • 34447641096 scopus 로고    scopus 로고
    • Meta-modeling of the pesticide fate model macro for groundwater exposure assessments using artificial neural networks
    • Stenemo, F., Lindahl, A. M. L., Gardenas, A. & Jarvis, N. 2007 Meta-modeling of the pesticide fate model MACRO for groundwater exposure assessments using artificial neural networks. J. Contam. Hydrol. 93 (1-4), 270-283.
    • (2007) J. Contam. Hydrol. , vol.93 , Issue.1-4 , pp. 270-283
    • Stenemo, F.1    Lindahl, A.M.L.2    Gardenas, A.3    Jarvis, N.4
  • 44
    • 0344035546 scopus 로고    scopus 로고
    • Evaluation of neural networks for modeling nitrate concentrations in rivers
    • Suen, J.-P. & Eheart, J. W. 2003 Evaluation of neural networks for modeling nitrate concentrations in rivers. J. Water Resour. Plann. Manage. 129 (6), 505-510.
    • (2003) J. Water Resour. Plann. Manage. , vol.129 , Issue.6 , pp. 505-510
    • Suen, J.-P.1    Eheart, J.W.2
  • 45
    • 0034235538 scopus 로고    scopus 로고
    • Classification of river basins using artificial neural network
    • Thandaveswara, B. S. & Sajikumar, N. 2000 Classification of river basins using artificial neural network. J. Hydrol. Eng. 5 (3), 290-298.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.3 , pp. 290-298
    • Thandaveswara, B.S.1    Sajikumar, N.2
  • 46
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • Tokar, S. & Markus, M. 2000 Precipitation-runoff modeling using artificial neural networks and conceptual models. J. Hydrol. Eng. 5 (2), 156-161.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 156-161
    • Tokar, S.1    Markus, M.2
  • 47
    • 0000503836 scopus 로고
    • National primary drinking water regulations: Final rule. 40 cfr parts 141, 142 and 143
    • USEPA (United States Environmental Protection Agency)
    • USEPA (United States Environmental Protection Agency) 1991 National Primary Drinking Water Regulations: Final Rule. 40 CFR Parts 141, 142 and 143. Fed. Regist. 56(20), 3526-3597.
    • (1991) Fed. Regist. , vol.56 , Issue.20 , pp. 3526-3597
  • 48
    • 2342561137 scopus 로고    scopus 로고
    • Development of an artificial neural network for hydrologic and water quality modeling of agricultural watersheds
    • Yu, C., Northcott, W. J. & Mclsaac, G. F. 2004 Development of an artificial neural network for hydrologic and water quality modeling of agricultural watersheds. Trans. ASAE 47 (1), 285-290.
    • (2004) Trans. ASAE , vol.47 , Issue.1 , pp. 285-290
    • Yu C. Northcott, W.J.1    Mclsaac, G.F.2
  • 49
    • 0037466126 scopus 로고    scopus 로고
    • Geomorphology-based artificial neural networks (ganns) for estimation of direct runoff over watersheds
    • Zhang, B. & Govindaraju, R. S. 2003 Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds. J. Hydrol. 273 (1-4), 18-34.
    • (2003) J. Hydrol. , vol.273 , Issue.1-4 , pp. 18-34
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.