메뉴 건너뛰기




Volumn 22, Issue 9, 2010, Pages 2369-2389

Extracting state transition dynamics frommultiple spike trains using hidden markov models with correlated poisson distribution

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; BIOLOGICAL MODEL; LETTER; NERVE CELL; POISSON DISTRIBUTION; PROBABILITY;

EID: 78149344985     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2010.08-08-838     Document Type: Letter
Times cited : (4)

References (27)
  • 2
    • 0003278032 scopus 로고    scopus 로고
    • Inferring parameters and structure of latent variable models by variational Bayes
    • 21-20 San Francisco: Morgan Kaufmann
    • Attias, H. (1999). Inferring parameters and structure of latent variable models by variational Bayes. In Proc. of 15th Conference on Uncertainty in Artificial Intelligence (pp. 21-20). San Francisco: Morgan Kaufmann.
    • (1999) In Proc. of 15th Conference on Uncertainty in Artificial Intelligence
    • Attias, H.1
  • 4
    • 84858790082 scopus 로고    scopus 로고
    • Characterizing neural dependencies with copula models
    • D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Cambridge, MA: MIT Press
    • Berkes, P., Wood, F., & Pillow, J. (2009). Characterizing neural dependencies with copula models. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems, 21 (pp. 129-136). Cambridge, MA: MIT Press.
    • (2009) Advances in neural information processing systems , vol.21 , pp. 129-136
    • Berkes, P.1    Wood, F.2    Pillow, J.3
  • 5
    • 0036482863 scopus 로고    scopus 로고
    • The timerescaling theorem and its application to neural spike train data analysis
    • Brown, E. N., Barbieri, R., Ventura, V., Kass, R. E., & Frank, L. M. (2002). The timerescaling theorem and its application to neural spike train data analysis. Neural Computation, 14, 325-346.
    • (2002) Neural Computation , vol.14 , pp. 325-346
    • Brown, E.N.1    Barbieri, R.2    Ventura, V.3    Kass, R.E.4    Frank, L.M.5
  • 6
    • 2142765521 scopus 로고    scopus 로고
    • Multiple neural spike train data analysis: State-of-the-art and future challenges
    • Brown, E. N., Kass, R. E., & Mitra, P. P. (2004). Multiple neural spike train data analysis: State-of-the-art and future challenges. Nature Neuroscience, 7, 456-461.
    • (2004) Nature Neuroscience , vol.7 , pp. 456-461
    • Brown, E.N.1    Kass, R.E.2    Mitra, P.P.3
  • 7
    • 37649003473 scopus 로고    scopus 로고
    • Efficient estimation of hidden state dynamics from spike trains
    • Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Cambridge, MA: MIT Press
    • Danoczy, M., & Hahnloser, R. (2005). Efficient estimation of hidden state dynamics from spike trains. In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural information processing systems, 18 (pp. 227-234). Cambridge, MA: MIT Press.
    • (2005) Advances in neural information processing systems , vol.18 , pp. 227-234
    • Danoczy, M.1    Hahnloser, R.2
  • 8
    • 0012762691 scopus 로고    scopus 로고
    • HiddenMarkovmodelling of simultaneously recorded cells in the associative cortex of behaving monkeys
    • Gat, I., Tishby, N.,& Abeles,M. (1997). HiddenMarkovmodelling of simultaneously recorded cells in the associative cortex of behaving monkeys. Network: Computation in Neural Systems, 8, 297-322.
    • (1997) Network: Computation in Neural Systems , vol.8 , pp. 297-322
    • Gat, I.1    Tishby, N.2    Abeles, M.3
  • 10
    • 36749103780 scopus 로고    scopus 로고
    • Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles
    • Jones, L. M., Fontanini, A., Sadacca, B. F., Miller, P., & Katz, D. B. (2007). Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles. Proc. Nat. Acad. Sci. USA, 104, 18772-18777.
    • (2007) Proc. Nat. Acad. Sci. USA , vol.104 , pp. 18772-18777
    • Jones, L.M.1    Fontanini, A.2    Sadacca, B.F.3    Miller, P.4    Katz, D.B.5
  • 11
    • 0012719278 scopus 로고
    • On recurrence relations for the probability function of multivariate generalized Poisson distribution
    • Kano,K.,&Kawamura, K. (1991).On recurrence relations for the probability function of multivariate generalized Poisson distribution. Communications in Statistics, 20, 165-178.
    • (1991) Communications in Statistics , vol.20 , pp. 165-178
    • Kano, K.1    Kawamura, K.2
  • 12
    • 78149330785 scopus 로고    scopus 로고
    • Extracting state transition dynamics from multiple spike trains with correlated Poisson HMM
    • D. Koller, D. Schuurmans,Y. Bengio,&L. Bottou (Eds.), Cambridge, MA: MIT Press
    • Katahira, K., Nishikawa, J., Okanoya, K., & Okada, M. (2009). Extracting state transition dynamics from multiple spike trains with correlated Poisson HMM. In D. Koller, D. Schuurmans,Y. Bengio,&L. Bottou (Eds.), Advances in neural information processing systems, 21 (pp. 817-824). Cambridge, MA: MIT Press.
    • (2009) Advances in neural information processing systems , vol.21 , pp. 817-824
    • Katahira, K.1    Nishikawa, J.2    Okanoya, K.3    Okada, M.4
  • 13
    • 35448977149 scopus 로고    scopus 로고
    • Common-input models for multiple neural spike-train data
    • Kulkarni, J. E., & Paninski, L. (2007). Common-input models for multiple neural spike-train data. Network, 18, 375-407.
    • (2007) Network , vol.18 , pp. 375-407
    • Kulkarni, J.E.1    Paninski, L.2
  • 14
    • 0030587302 scopus 로고    scopus 로고
    • Intracellular characterization of song-specific neurons in the zebra finch auditory forebrain
    • Lewicki, M. S. (1996). Intracellular characterization of song-specific neurons in the zebra finch auditory forebrain. Journal of Neuroscience, 16, 5855-5863.
    • (1996) Journal of Neuroscience , vol.16 , pp. 5855-5863
    • Lewicki, M.S.1
  • 15
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay, D. J. C. (1992). Bayesian interpolation. Neural Computation, 4, 415-447.
    • (1992) Neural Computation , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 16
    • 34249687533 scopus 로고    scopus 로고
    • Bayesian multivariate Poisson mixtures with an unknown number of components
    • Meligkotsidou, L. (2007). Bayesian multivariate Poisson mixtures with an unknown number of components. Statistics and Computing, 17, 93-107.
    • (2007) Statistics and Computing , vol.17 , pp. 93-107
    • Meligkotsidou, L.1
  • 17
    • 0036779831 scopus 로고    scopus 로고
    • Information geometric measure for neural spikes
    • Nakahara, H., & Amari, S. (2002). Information geometric measure for neural spikes. Neural Computation, 14, 2269-2316.
    • (2002) Neural Computation , vol.14 , pp. 2269-2316
    • Nakahara, H.1    Amari, S.2
  • 18
    • 84858768067 scopus 로고    scopus 로고
    • Modeling short-term noise dependence of spike counts in macaque prefrontal cortex
    • D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Cambridge, MA: MIT Press
    • Onken, A.,Grünewälder, S.,Munk, M.,&Obermayer, K. (2009).Modeling short-term noise dependence of spike counts in macaque prefrontal cortex. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems, 21 (pp. 1233-1240). Cambridge, MA: MIT Press.
    • (2009) Advances in neural information processing systems , vol.21 , pp. 1233-1240
    • Onken, A.1    Grünewälder, S.2    Munk, M.3    Obermayer, K.4
  • 19
    • 0028671948 scopus 로고
    • Analysis, classification, and coding of multielectrode spike trains with hiddenMarkov models
    • Radons, G., Becker, J. D., Dülfer, B., & Krüger, J. (1994). Analysis, classification, and coding of multielectrode spike trains with hiddenMarkov models. Biological Cybernetics, 71, 359-373.
    • (1994) Biological Cybernetics , vol.71 , pp. 359-373
    • Radons, G.1    Becker, J.D.2    Dülfer, B.3    Krüger, J.4
  • 20
    • 33646170322 scopus 로고    scopus 로고
    • Weak pairwise correlations imply strongly correlated network states in a neural population
    • Schneidman, E., Berry,M. J., Segev, R.,&Bialek,W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440, 1007-1012.
    • (2006) Nature , vol.440 , pp. 1007-1012
    • Schneidman, E.1    Berry, M.J.2    Segev, R.3    Bialek, W.4
  • 21
    • 0038605051 scopus 로고    scopus 로고
    • Estimating a state-space model from point process observations
    • Smith, A. C., & Brown, E. N. (2003). Estimating a state-space model from point process observations. Neural Computation, 15, 965-991.
    • (2003) Neural Computation , vol.15 , pp. 965-991
    • Smith, A.C.1    Brown, E.N.2
  • 22
    • 33645011391 scopus 로고    scopus 로고
    • Correlated transition between two activity states of neurons
    • Uchida, G., Fukuda, M., & Tanifuji, M. (2006). Correlated transition between two activity states of neurons. Physal Review E, 73, 031910.
    • (2006) Physal Review E , vol.73 , pp. 031910
    • Uchida, G.1    Fukuda, M.2    Tanifuji, M.3
  • 23
    • 0028921592 scopus 로고
    • Dynamics of neuronal interactions in monkey cortex in relation to behavioral events
    • Vaadia, E., Haalman, I., Abeles, M., Bergman, H., Prut, Y. Slovin H., et al. (1995). Dynamics of neuronal interactions in monkey cortex in relation to behavioral events. Nature, 373, 515-518.
    • (1995) Nature , vol.373 , pp. 515-518
    • Vaadia, E.1    Haalman, I.2    Abeles, M.3    Bergman, H.4    Prut, Y.5    Slovin, H.6
  • 25
    • 37849031583 scopus 로고    scopus 로고
    • Spike correlations in a songbird agree with a simple Markov population model
    • Weber, A., & Hahnloser, R. (2008). Spike correlations in a songbird agree with a simple Markov population model. PLoS Computational Biology, 3, e249.
    • (2008) PLoS Computational Biology , vol.3
    • Weber, A.1    Hahnloser, R.2
  • 26
    • 27844446553 scopus 로고    scopus 로고
    • Algebraic geometry and stochastic complexity of hidden Markov models
    • Yamazaki, K., &Watanabe, S. (2005). Algebraic geometry and stochastic complexity of hidden Markov models. Neurocomputing, 69, 62-84.
    • (2005) Neurocomputing , vol.69 , pp. 62-84
    • Yamazaki, K.1    Watanabe, S.2
  • 27
    • 0029746196 scopus 로고    scopus 로고
    • Temporal hierarchical control of singing in birds
    • Yu, A. C., &Margoliash, D. (1996). Temporal hierarchical control of singing in birds. Science, 273, 1871-1875.
    • (1996) Science , vol.273 , pp. 1871-1875
    • Yu, A.C.1    Margoliash, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.