메뉴 건너뛰기




Volumn 38, Issue 3, 2011, Pages 1611-1618

Multikernel semiparametric linear programming support vector regression

Author keywords

Classification; Linear programming support vector regression; Multikernel trick; Semiparametric technique

Indexed keywords

ADMISSIBLE FUNCTIONS; CLASSIFICATION; DATA TREND; KERNEL FUNCTION; LINEAR PROGRAMMING SUPPORT VECTOR REGRESSION; MULTI-KERNEL; NONLINEAR MAPPINGS; PROGRAMMING SUPPORT; REAL WORLD DATA; SEMIPARAMETRIC; SINGLE KERNEL;

EID: 78049526829     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2010.07.082     Document Type: Article
Times cited : (25)

References (31)
  • 1
    • 12244300139 scopus 로고    scopus 로고
    • Column-generation boosting methods for mixture of kernels
    • Bi, J.; Zhang, T.; Bennett, K. (2004). Column-generation boosting methods for mixture of kernels. In KDD (pp. 521-526).
    • (2004) KDD , pp. 521-526
    • Bi, J.1    Zhang, T.2    Bennett, K.3
  • 2
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J.C. Burges A tutorial on support vector machines for pattern recognition Data Mining and Knowledge Discovery 2 2 1998 121 167
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 4
    • 21744434576 scopus 로고    scopus 로고
    • Seeking multi-thresholds directly from support vectors for image segmentation
    • S. Chen, and M. Wang Seeking multi-thresholds directly from support vectors for image segmentation Neurocomputing 67 1-4 2005 335 344
    • (2005) Neurocomputing , vol.67 , Issue.14 , pp. 335-344
    • Chen, S.1    Wang, M.2
  • 5
    • 0000913324 scopus 로고    scopus 로고
    • SVMTorch: Support vector machines for large-scale regression problems
    • R. Collobert, and S. Bengio SVMTorch: Support vector machines for large-scale regression problems Journal of Machine Learning Research 1 2 2001 143 160
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.2 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 8
    • 0035200758 scopus 로고    scopus 로고
    • A new method for sparsity control in support vector classification and regression
    • P.M.L. Drezet, and R.R. Harrison A new method for sparsity control in support vector classification and regression Pattern Recognition 34 2001 111 125
    • (2001) Pattern Recognition , vol.34 , pp. 111-125
    • Drezet, P.M.L.1    Harrison, R.R.2
  • 9
    • 0035419334 scopus 로고    scopus 로고
    • Support vector machines for face recognition
    • G. Guo, S.Z. Li, and K.L. Chan Support vector machines for face recognition Image and Vision Computing 19 9-10 2001 631 638
    • (2001) Image and Vision Computing , vol.19 , Issue.910 , pp. 631-638
    • Guo, G.1    Li, S.Z.2    Chan, K.L.3
  • 13
    • 0000406385 scopus 로고
    • A correspondence between Bayesian estimation on stochastic processes and smoothing by splines
    • G.S. Kimeldorf, and G. Wahba A correspondence between Bayesian estimation on stochastic processes and smoothing by splines Annals of Mathematical Statistics 41 1970 495 502
    • (1970) Annals of Mathematical Statistics , vol.41 , pp. 495-502
    • Kimeldorf, G.S.1    Wahba, G.2
  • 15
    • 38349186243 scopus 로고    scopus 로고
    • Local prediction of non-linear time series using support vector regression
    • K.W. Lau, and Q.H. Wu Local prediction of non-linear time series using support vector regression Pattern Recognition 41 5 2008 1539 1547
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 1539-1547
    • Lau, K.W.1    Wu, Q.H.2
  • 16
    • 0037044082 scopus 로고    scopus 로고
    • Time series prediction using support vector machines, the orthogonal and the regularized orthogonal least-squares algorithms
    • K.L. Lee, and S.A. Billings Time series prediction using support vector machines, the orthogonal and the regularized orthogonal least-squares algorithms International Journal of Systems Science 33 2002 811 821
    • (2002) International Journal of Systems Science , vol.33 , pp. 811-821
    • Lee, K.L.1    Billings, S.A.2
  • 17
    • 33750523404 scopus 로고    scopus 로고
    • Adaptive simplification of solution for support vector machine
    • DOI 10.1016/j.patcog.2006.07.005, PII S0031320306003153
    • Q. Li, L. Jiao, and Y. Hao Adaptive simplification of solution for support vector machine Pattern Recognition 40 3 2007 972 980 (Pubitemid 44667758)
    • (2007) Pattern Recognition , vol.40 , Issue.3 , pp. 972-980
    • Li, Q.1    Jiao, L.2    Hao, Y.3
  • 18
    • 34547971649 scopus 로고    scopus 로고
    • Generalized regularized least-squares learning with predefined features in a Hilbert space
    • MIT Press Cambridge, MA
    • W. Li, K.-H. Lee, and K.-S. Leung Generalized regularized least-squares learning with predefined features in a Hilbert space Advances in Neural Information Processing Systems Vol. 19 2007 MIT Press Cambridge, MA
    • (2007) Advances in Neural Information Processing Systems , vol.19
    • Li, W.1    Lee, K.-H.2    Leung, K.-S.3
  • 19
    • 53749102436 scopus 로고    scopus 로고
    • Non-Mercer hybrid kernel for linear programming support vector regression in nonlinear systems identification
    • Z. Lu, and J. Sun Non-Mercer hybrid kernel for linear programming support vector regression in nonlinear systems identification Applied Soft Computing 9 2009 94 99
    • (2009) Applied Soft Computing , vol.9 , pp. 94-99
    • Lu, Z.1    Sun, J.2
  • 20
    • 33646511274 scopus 로고    scopus 로고
    • A bottom-up method for simplifying support vector solutions
    • D.-D. Nguyen, and T.-B. Ho A bottom-up method for simplifying support vector solutions IEEE Transactions on Neural Networks 17 3 2006 792 796
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.3 , pp. 792-796
    • Nguyen, D.-D.1    Ho, T.-B.2
  • 21
    • 67650160466 scopus 로고    scopus 로고
    • Regression using multikernel and semiparametric support vector algorithms
    • C.-V. Nguyen, and D.B.H. Tay Regression using multikernel and semiparametric support vector algorithms IEEE Signal Processing 15 2008 481 484
    • (2008) IEEE Signal Processing , vol.15 , pp. 481-484
    • Nguyen, C.-V.1    Tay, D.B.H.2
  • 24
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Cambridge, MA, USA
    • Platt, J.C. (1998). Fast training of support vector machines using sequential minimal optimization. In Advances in kernel methods-support vector machines, Cambridge, MA, USA.
    • (1998) Advances in Kernel Methods-support Vector Machines
    • Platt, J.C.1
  • 31
    • 33750379440 scopus 로고    scopus 로고
    • Non-flat function estimation with a multi-scale support vector regression
    • DOI 10.1016/j.neucom.2005.12.128, PII S0925231206000439
    • D. Zheng, J. Wang, and Y. Zhao Non-flat function estimation with a multi-scale support vector regression Neurocomputing 70 2006 420 429 (Pubitemid 44615776)
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 420-429
    • Zheng, D.1    Wang, J.2    Zhao, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.