메뉴 건너뛰기




Volumn 26, Issue 10, 2010, Pages

A discrepancy principle for Poisson data

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN PARADIGM; COUNTING PROCESS; DE-NOISING; DEBLURRING PROBLEMS; DISCREPANCY PRINCIPLE; EMISSION TOMOGRAPHY; GENERALIZED KULLBACK-LEIBLER DIVERGENCE; ILL-CONDITIONED; IMAGE INTENSITIES; IMAGING MATRICES; INCIDENT PARTICLES; MAXIMIZATION PROBLEM; MAXIMUM-LIKELIHOOD APPROACH; NUMERICAL EXPERIMENTS; POISSON DATA; POISSON RANDOM VARIABLES; REGULARIZATION FUNCTION; REGULARIZATION PARAMETERS; STATISTICAL PROPERTIES; TIKHONOV REGULARIZATION;

EID: 78049442605     PISSN: 02665611     EISSN: 13616420     Source Type: Journal    
DOI: 10.1088/0266-5611/26/10/105004     Document Type: Article
Times cited : (103)

References (36)
  • 1
    • 40849092848 scopus 로고    scopus 로고
    • Tikhonov regularized Poisson likelihood estimation: Theoretical justification and a computational method
    • Bardsley J M and Laobeul N 2008 Tikhonov regularized Poisson likelihood estimation: theoretical justification and a computational method Inverse Problems Sci. Eng. 16 199-215
    • (2008) Inverse Problems Sci. Eng. , vol.16 , pp. 199-215
    • Bardsley, J.M.1    Laobeul, N.2
  • 2
    • 67349157591 scopus 로고    scopus 로고
    • Total variation-penalized Poisson likelihood estimation for ill-posed problems
    • Bardsley J M and Luttman A 2009 Total variation-penalized Poisson likelihood estimation for ill-posed problems Adv. Comput. Math. 31 35-59
    • (2009) Adv. Comput. Math. , vol.31 , pp. 35-59
    • Bardsley, J.M.1    Luttman, A.2
  • 3
    • 70350637680 scopus 로고    scopus 로고
    • Regularization parameter selection methods for ill-posed Poisson maximumlikelihood estimation
    • Bardsley J M and Goldes J 2009 Regularization parameter selection methods for ill-posed Poisson maximumlikelihood estimation Inverse Problems 25 095005
    • (2009) Inverse Problems , vol.25 , pp. 095005
    • Bardsley, J.M.1    Goldes, J.2
  • 6
    • 62649113355 scopus 로고    scopus 로고
    • A scaled gradient projection method for constrained image deblurring
    • Bonettini S, Zanella R and Zanni L 2009 A scaled gradient projection method for constrained image deblurring Inverse Problems 25 015002
    • (2009) Inverse Problems , vol.25 , pp. 015002
    • Bonettini, S.1    Zanella, R.2    Zanni, L.3
  • 8
    • 80052398615 scopus 로고    scopus 로고
    • Primal and dual Bregman methods with application to optical nanoscopy
    • (to appear) (doi:10.1007/s11263-010-0339-5)
    • Brune C, Sawatzky A and Burger M 2010 Primal and dual Bregman methods with application to optical nanoscopy Int. J. Comput. Vis. (to appear) (doi:10.1007/s11263-010-0339-5)
    • (2010) Int. J. Comput. Vis.
    • Brune, C.1    Sawatzky, A.2    Burger, M.3
  • 9
    • 34548307020 scopus 로고    scopus 로고
    • Multilevel algorithms for a Poisson noise removal model with Total-variation regularization
    • Chan R H and Chen K 2007 Multilevel algorithms for a Poisson noise removal model with Total-variation regularization Int. J. Comput. Math. 84 1183-98
    • (2007) Int. J. Comput. Math. , vol.84 , pp. 1183-1198
    • Chan, R.H.1    Chen, K.2
  • 11
    • 0029721393 scopus 로고    scopus 로고
    • Fast regularization technique for expectation maximization algorithm for optical sectioning microscopy
    • Conchello J A and McNally J G 1996 Fast regularization technique for expectation maximization algorithm for optical sectioning microscopy Proc. SPIE 2655 199-208
    • (1996) Proc. SPIE , vol.2655 , pp. 199-208
    • Conchello, J.A.1    McNally, J.G.2
  • 14
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • Geman S and Geman D 1984 Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images IEEE Trans. Pattern Anal. Mach. Intell. 6 721-41
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 15
    • 0001173603 scopus 로고
    • Common structure of techniques for choosing smoothing parameters in regression problem
    • Hall P and Titterington D M 1987 Common structure of techniques for choosing smoothing parameters in regression problem J. R. Stat. Soc. B 49 184-98
    • (1987) J. R. Stat. Soc. B , vol.49 , pp. 184-198
    • Hall, P.1    Titterington, D.M.2
  • 16
    • 0011051811 scopus 로고    scopus 로고
    • Comparison between ISRA and RLA algorithms. Use of a Wiener filter based criterion
    • Lantéri H, Soummer R and Aime C 1999 Comparison between ISRA and RLA algorithms. Use of a Wiener filter based criterion Astron. Astrophys. Suppl. Ser. 140 235-46
    • (1999) Astron. Astrophys. Suppl. Ser. , vol.140 , pp. 235-246
    • Lantéri, H.1    Soummer, R.2    Aime, C.3
  • 17
    • 0036796491 scopus 로고    scopus 로고
    • Penalized maximum-likelihood image restoration with positivity constraints: Multiplicative algorithms
    • Lantéri H, Roche M and Aime C 2002 Penalized maximum-likelihood image restoration with positivity constraints: multiplicative algorithms Inverse Problems 18 1397-419
    • (2002) Inverse Problems , vol.18 , pp. 1397-1419
    • Lantéri, H.1    Roche, M.2    Aime, C.3
  • 18
    • 0024683826 scopus 로고
    • Feasible images and practical stopping rules for iterative algorithms in emission tomography
    • Llacer J and Veklerov E 1989 Feasible images and practical stopping rules for iterative algorithms in emission tomography IEEE Trans. Med. Imaging 8 186-93
    • (1989) IEEE Trans. Med. Imaging , vol.8 , pp. 186-193
    • Llacer, J.1    Veklerov, E.2
  • 19
    • 0025445377 scopus 로고
    • On the validity of hypothesis testing for feasibility of image reconstruction
    • Llacer J 1990 On the validity of hypothesis testing for feasibility of image reconstruction IEEE Trans. Med. Imaging 9 226-30
    • (1990) IEEE Trans. Med. Imaging , vol.9 , pp. 226-230
    • Llacer, J.1
  • 20
    • 34247500347 scopus 로고    scopus 로고
    • A variational approach to reconstructing images corrupted by Poisson noise
    • Le T, Chartran R and Asaki T J 2007 A variational approach to reconstructing images corrupted by Poisson noise J. Math. Imaging Vis. 27 257-63
    • (2007) J. Math. Imaging Vis. , vol.27 , pp. 257-263
    • Chartran R, L.T.1    Asaki, T.J.2
  • 21
    • 0001050714 scopus 로고
    • An iterative technique for the rectification of observed distributions
    • Lucy L B 1974 An iterative technique for the rectification of observed distributions Astron. J. 79 745-54
    • (1974) Astron. J. , vol.79 , pp. 745-754
    • Lucy, L.B.1
  • 22
    • 0035350836 scopus 로고    scopus 로고
    • Fast maximum-likelihood image-restoration algorithms for threedimensional fluorescence microscopy
    • Markham J and Conchello J A 2001 Fast maximum-likelihood image-restoration algorithms for threedimensional fluorescence microscopy J. Opt. Soc. Am. A-18 1062-71
    • (2001) J. Opt. Soc. Am. , vol.A-18 , pp. 1062-1071
    • Markham, J.1    Conchello, J.A.2
  • 24
    • 78049447098 scopus 로고
    • Generalized cross-validation as a stopping rule for the Richardson-Lucy algorithm
    • 2nd edn ed R J Hanisch and R L White (Baltimore: Space Telescope Science Institute)
    • Perry K M and Reeves S J 1994 Generalized cross-validation as a stopping rule for the Richardson-Lucy algorithm The Restoration of HST Images and Spectra 2nd edn ed R J Hanisch and R L White (Baltimore: Space Telescope Science Institute) 97-103
    • (1994) The Restoration of HST Images and Spectra , pp. 97-103
    • Perry, K.M.1    Reeves, S.J.2
  • 25
    • 0042405049 scopus 로고    scopus 로고
    • Statistical-information-based performance criteria for Richardson-Lucy image deblurring
    • Prasad S 2002 Statistical-information-based performance criteria for Richardson-Lucy image deblurring J. Opt. Soc. Am. A-19 1286-96
    • (2002) J. Opt. Soc. Am. , vol.A-19 , pp. 1286-1296
    • Prasad, S.1
  • 26
    • 50549090016 scopus 로고    scopus 로고
    • Monte-Carlo SURE: A black-box optimization of regularization parameters for general denoising algorithms
    • Ramani S, Blu T and Unser M 2008 Monte-Carlo SURE: a black-box optimization of regularization parameters for general denoising algorithms IEEE Trans. Image Process. 17 1540-54
    • (2008) IEEE Trans. Image Process. , vol.17 , pp. 1540-1554
    • Ramani, S.1    Blu, T.2    Unser, M.3
  • 27
    • 51049124037 scopus 로고    scopus 로고
    • Deconvolution of 3D fluorescence micrographs with automatic risk minimization
    • Ramani S, Vonesch C and Unser M 2008 Deconvolution of 3D fluorescence micrographs with automatic risk minimization Proc. ISBI 732-5
    • (2008) Proc. ISBI , pp. 732-735
    • Ramani, S.1    Vonesch, C.2    Unser, M.3
  • 28
    • 0002594849 scopus 로고
    • Bayesian based iterative method of image restoration
    • Richardson W H 1972 Bayesian based iterative method of image restoration J. Opt. Soc. Am. 62 55-9
    • (1972) J. Opt. Soc. Am. , vol.62 , pp. 55-59
    • Richardson, W.H.1
  • 29
    • 77955515937 scopus 로고    scopus 로고
    • Iterative regularization algorithms for constrained image deblurring on graphics processors
    • Ruggiero V, Serafini T, Zanella R and Zanni L 2009 Iterative regularization algorithms for constrained image deblurring on graphics processors J. Glob. Optim. 48 148-57
    • (2009) J. Glob. Optim. , vol.48 , pp. 148-157
    • Ruggiero, V.1    Serafini, T.2    Zanella, R.3    Zanni, L.4
  • 30
    • 78049429276 scopus 로고    scopus 로고
    • Gradient projection methods for image deblurring and denoising on graphics processors
    • ed B Chapman, F Desprez, G R Joubert, A Lichnewsky, F Peters and T Priol (Amsterdam: IOS Press)
    • Serafini T, Zanella R and Zanni L 2010 Gradient projection methods for image deblurring and denoising on graphics processors Advances in Parallel Computing vol 19 ed B Chapman, F Desprez, G R Joubert, A Lichnewsky, F Peters and T Priol (Amsterdam: IOS Press) pp 59-66
    • (2010) Advances in Parallel Computing , vol.19 , pp. 59-66
    • Serafini, T.1    Zanella, R.2    Zanni, L.3
  • 31
    • 0020194763 scopus 로고
    • Maximum-likelihood reconstruction for emission tomography
    • Shepp L A and Vardi Y 1982 Maximum-likelihood reconstruction for emission tomography Trans. Med. Imaging MI-1 113-22
    • (1982) Trans. Med. Imaging , vol.MI-1 , pp. 113-122
    • Shepp, L.A.1    Vardi, Y.2
  • 33
    • 0027597289 scopus 로고
    • Image recovery from data acquired with a charged-coupleddevice camera
    • Snyder D L, Hammoud A M and White R L 1993 Image recovery from data acquired with a charged-coupleddevice camera J. Opt. Soc. Am. A 10 1014-23
    • (1993) J. Opt. Soc. Am. A , vol.10 , pp. 1014-1023
    • Snyder, D.L.1    Hammoud, A.M.2    White, R.L.3
  • 34
    • 0023670085 scopus 로고
    • Stopping rule for the MLE algorithm based on statistical hypothesis testing
    • Veklerov E and Llacer J 1987 Stopping rule for the MLE algorithm based on statistical hypothesis testing Trans. Med. Imaging 6 313-9
    • (1987) Trans. Med. Imaging , vol.6 , pp. 313-319
    • Veklerov, E.1    Llacer, J.2
  • 36
    • 70350309491 scopus 로고    scopus 로고
    • Efficient gradient projection methods for edge-preserving removal of Poisson noise
    • Zanella R, Boccacci P, Zanni L and Bertero M 2009 Efficient gradient projection methods for edge-preserving removal of Poisson noise Inverse Problems 25 045010
    • (2009) Inverse Problems , vol.25 , pp. 045010
    • Zanella, R.1    Boccacci, P.2    Zanni, L.3    Bertero, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.