메뉴 건너뛰기




Volumn , Issue , 2010, Pages 342-345

A novel network model for molecular prognosis

Author keywords

Gene co expression networks; Implication networks; Molecular prognosis; Personalized therapy

Indexed keywords

BIOMARKER IDENTIFICATION; CANCER RECURRENCE; CLINICAL OUTCOME; CO-EXPRESSION NETWORKS; CONNECTED NETWORKS; DIFFERENTIAL COMPONENT; DISEASE STATE; GENE EXPRESSION PROFILES; GENOME-WIDE ASSOCIATION; IMPLICATION NETWORKS; LUNG CANCER; MOLECULAR PROGNOSIS; NETWORK MODELS; NETWORK-BASED; PERSONALIZED THERAPY; PREDICTION LOGIC;

EID: 77958024236     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1854776.1854825     Document Type: Conference Paper
Times cited : (4)

References (30)
  • 1
    • 41649119247 scopus 로고    scopus 로고
    • Protein networks in disease
    • Ideker T, Sharan R. 2008. Protein networks in disease. Genome Res 18: 644-652.
    • (2008) Genome Res , vol.18 , pp. 644-652
    • Ideker, T.1    Sharan, R.2
  • 3
    • 15044349115 scopus 로고    scopus 로고
    • The efficiency of multi-target drugs: The network approach might help drug design
    • Csermely P, Agoston V, Pongor S. 2005. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 26: 178-182.
    • (2005) Trends Pharmacol Sci , vol.26 , pp. 178-182
    • Csermely, P.1    Agoston, V.2    Pongor, S.3
  • 4
    • 34250887474 scopus 로고    scopus 로고
    • Taking gene-expression profiling to the clinic: When will molecular signatures become relevant to patient care?
    • Sotiriou C, Piccart MJ. 2007. Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer 7: 545-553.
    • (2007) Nat Rev Cancer , vol.7 , pp. 545-553
    • Sotiriou, C.1    Piccart, M.J.2
  • 6
    • 33846011470 scopus 로고    scopus 로고
    • A five-gene signature and clinical outcome in non-small-cell lung cancer
    • Chen HY, Yu SL, Chen CH, Chang GC, Chen CY et al. 2007. A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med 356: 11-20.
    • (2007) N Engl J Med , vol.356 , pp. 11-20
    • Chen, H.Y.1    Yu, S.L.2    Ch, C.3    Chang, G.C.4    Chen, C.Y.5
  • 7
    • 33746875641 scopus 로고    scopus 로고
    • A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer
    • Potti A, Mukherjee S, Petersen R, Dressman HK, Bild A et al. 2006. A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N Engl J Med 355: 570-580.
    • (2006) N Engl J Med , vol.355 , pp. 570-580
    • Potti, A.1    Mukherjee, S.2    Petersen, R.3    Dressman, H.K.4    Bild, A.5
  • 8
    • 49149129916 scopus 로고    scopus 로고
    • Gene expression-based survival prediction in lung adenocarcinoma: A multi-site, blinded validation study
    • Shedden K, Taylor JM, Enkemann SA, Tsao MS, Yeatman TJ et al. 2008. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 14: 822-827.
    • (2008) Nat Med , vol.14 , pp. 822-827
    • Shedden, K.1    Taylor, J.M.2    Enkemann, S.A.3    Tsao, M.S.4    Yeatman, T.J.5
  • 9
    • 0032583152 scopus 로고    scopus 로고
    • Analysis of repeated markers used to predict progression of cancer
    • Emir B, Wieand S, Su JQ, Cha S. 1998. Analysis of repeated markers used to predict progression of cancer. Stat Med 17: 2563-2578.
    • (1998) Stat Med , vol.17 , pp. 2563-2578
    • Emir, B.1    Wieand, S.2    Su, J.Q.3    Cha, S.4
  • 13
    • 0037686112 scopus 로고    scopus 로고
    • The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster
    • Albert R, Othmer HG. 2003. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol 223: 1-18.
    • (2003) J Theor Biol , vol.223 , pp. 1-18
    • Albert, R.1    Othmer, H.G.2
  • 14
    • 52649087274 scopus 로고    scopus 로고
    • Modelling and analysis of gene regulatory networks
    • Karlebach G, Shamir R. 2008. Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 9: 770-780.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 770-780
    • Karlebach, G.1    Shamir, R.2
  • 15
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman N. 2004. Inferring cellular networks using probabilistic graphical models. Science 303: 799-805.
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 16
    • 45149106353 scopus 로고    scopus 로고
    • Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks
    • Zhu J, Zhang B, Smith EN, Drees B, Brem RB et al. 2008. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet 40: 854-861.
    • (2008) Nat Genet , vol.40 , pp. 854-861
    • Zhu, J.1    Zhang, B.2    Smith, E.N.3    Drees, B.4    Brem, R.B.5
  • 17
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP. 2005. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308: 523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 20
    • 0141484611 scopus 로고    scopus 로고
    • Evolutionary conservation of motif constituents in the yeast protein interaction network
    • Wuchty S, Oltvai ZN, Barabasi AL. 2003. Evolutionary conservation of motif constituents in the yeast protein interaction network. Nat Genet 35: 176-179.
    • (2003) Nat Genet , vol.35 , pp. 176-179
    • Wuchty, S.1    Oltvai, Z.N.2    Barabasi, A.L.3
  • 21
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • Kim SY, Imoto S, Miyano S. 2003. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform 4: 228-235.
    • (2003) Brief Bioinform , vol.4 , pp. 228-235
    • Kim, S.Y.1    Imoto, S.2    Miyano, S.3
  • 22
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • Pe'er D, Regev A, Elidan G, Friedman N. 2001. Inferring subnetworks from perturbed expression profiles. Bioinformatics 17 Suppl 1: S215-S224.
    • (2001) Bioinformatics , vol.17 , Issue.SUPPL. 1
    • Pe'er, D.1    Regev, A.2    Elidan, G.3    Friedman, N.4
  • 23
    • 0029332409 scopus 로고    scopus 로고
    • User-expertise modeling with empirically derived probabilistic implication networks
    • Desmarais MC, Maluf A, Liu J. 1996. User-expertise modeling with empirically derived probabilistic implication networks. User Modeling and User-Adapted Interaction 5: 283-315.
    • (1996) User Modeling and User-Adapted Interaction , vol.5 , pp. 283-315
    • Desmarais, M.C.1    Maluf, A.2    Liu, J.3
  • 24
  • 25
    • 0031273002 scopus 로고    scopus 로고
    • A method of learning implication networks from empirical data: Algorithm and monte-carlo simulation-based validation
    • Liu J, Desmarais MC. 1997. A Method of Learning Implication Networks from Empirical Data: Algorithm and Monte-Carlo Simulation-Based Validation. IEEE Transactions on Knowledge and Data Engineering 9: 990-1004.
    • (1997) IEEE Transactions on Knowledge and Data Engineering , vol.9 , pp. 990-1004
    • Liu, J.1    Desmarais, M.C.2
  • 26
    • 0035330328 scopus 로고    scopus 로고
    • A new uncertainty measure for belief networks with applications to optimal evidential inferencing
    • Liu J, Maluf D, Desmarais MC. 2001. A New Uncertainty Measure for Belief Networks with Applications to Optimal Evidential Inferencing. IEEE Transactions on Knowledge and Data Engineering 13: 416-425.
    • (2001) IEEE Transactions on Knowledge and Data Engineering , vol.13 , pp. 416-425
    • Liu, J.1    Maluf, D.2    Desmarais, M.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.