-
1
-
-
0031019745
-
Isolation of putative progenitor endothelial cells for angiogenesis
-
Asahara T, Murohara T, Sullivan A, et al Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997; 275: 964-7.
-
(1997)
Science.
, vol.275
, pp. 964-967
-
-
Asahara, T.1
Murohara, T.2
Sullivan, A.3
-
2
-
-
0037434561
-
Circulating endothelial progenitor cells, vascular function, and cardiovascular risk
-
Hill JM, Zalos G, Halcox JP, et al Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003; 348: 593-600.
-
(2003)
N Engl J Med.
, vol.348
, pp. 593-600
-
-
Hill, J.M.1
Zalos, G.2
Halcox, J.P.3
-
3
-
-
0032945433
-
Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization
-
Takahashi T, Kalka C, Masuda H, et al Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med. 1999; 5: 434-8.
-
(1999)
Nat Med.
, vol.5
, pp. 434-438
-
-
Takahashi, T.1
Kalka, C.2
Masuda, H.3
-
4
-
-
0033857389
-
Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice
-
Schatteman GC, Hanlon HD, Jiao C, et al Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest. 2000; 106: 571-8.
-
(2000)
J Clin Invest.
, vol.106
, pp. 571-578
-
-
Schatteman, G.C.1
Hanlon, H.D.2
Jiao, C.3
-
5
-
-
5644236574
-
Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial
-
Schächinger V, Assmus B, Britten MB, et al Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J Am Coll Cardiol. 2004; 44: 1690-9.
-
(2004)
J Am Coll Cardiol.
, vol.44
, pp. 1690-1699
-
-
Schächinger, V.1
Assmus, B.2
Britten, M.B.3
-
6
-
-
33845661462
-
Vascularization and engraftment of a human skin substitute using circulating progenitor cell-derived endothelial cells
-
Shepherd BR, Enis DR, Wang F, et al Vascularization and engraftment of a human skin substitute using circulating progenitor cell-derived endothelial cells. FASEB J. 2006; 20: 1739-41.
-
(2006)
FASEB J.
, vol.20
, pp. 1739-1741
-
-
Shepherd, B.R.1
Enis, D.R.2
Wang, F.3
-
7
-
-
0033529618
-
Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization
-
Asahara T, Masuda H, Takahashi T, et al Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999; 85: 221-8.
-
(1999)
Circ Res.
, vol.85
, pp. 221-228
-
-
Asahara, T.1
Masuda, H.2
Takahashi, T.3
-
8
-
-
33845707705
-
VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization
-
Li B, Sharpe EE, Maupin AB, et al VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J. 2006; 20: 1495-7.
-
(2006)
FASEB J.
, vol.20
, pp. 1495-1497
-
-
Li, B.1
Sharpe, E.E.2
Maupin, A.B.3
-
9
-
-
24944471398
-
VEGF protects brain against focal ischemia without increasing blood-brain permeability when administered intracerebroventricularly
-
Kaya D, Gürsoy-Özdemir Y, Yemisci M, et al VEGF protects brain against focal ischemia without increasing blood-brain permeability when administered intracerebroventricularly. J Cereb Blood Flow Metab. 2005; 25: 1111-8.
-
(2005)
J Cereb Blood Flow Metab.
, vol.25
, pp. 1111-1118
-
-
Kaya, D.1
Gürsoy-Özdemir, Y.2
Yemisci, M.3
-
10
-
-
0041743159
-
VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia
-
Sun Y, Jin K, Xie L, et al VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003; 111: 1843-51.
-
(2003)
J Clin Invest.
, vol.111
, pp. 1843-1851
-
-
Sun, Y.1
Jin, K.2
Xie, L.3
-
11
-
-
33644683263
-
Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization
-
Davis GE, Senger DR. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res. 2005; 97: 1093-107.
-
(2005)
Circ Res.
, vol.97
, pp. 1093-1107
-
-
Davis, G.E.1
Senger, D.R.2
-
12
-
-
0035895741
-
In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton
-
Deroanne CF, Lapiere CM, Nusgens BV. In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovasc Res. 2001; 49: 647-58.
-
(2001)
Cardiovasc Res.
, vol.49
, pp. 647-658
-
-
Deroanne, C.F.1
Lapiere, C.M.2
Nusgens, B.V.3
-
13
-
-
35348838370
-
The stiffness of three-dimensional ionic self-assembling peptide gels affects the extent of capillary-like network formation
-
Sieminski AL, Was AS, Kim G, et al The stiffness of three-dimensional ionic self-assembling peptide gels affects the extent of capillary-like network formation. Cell Biochem Biophys. 2007; 49: 73-83.
-
(2007)
Cell Biochem Biophys.
, vol.49
, pp. 73-83
-
-
Sieminski, A.L.1
Was, A.S.2
Kim, G.3
-
14
-
-
61349168351
-
A mechanosensitive transcriptional mechanism that controls angiogenesis
-
Mammoto A, Connor KM, Mammoto T, et al A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature. 2009; 457: 1103-8.
-
(2009)
Nature.
, vol.457
, pp. 1103-1108
-
-
Mammoto, A.1
Connor, K.M.2
Mammoto, T.3
-
15
-
-
1842426730
-
Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment
-
McBeath R, Pirone DM, Nelson CM, et al Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004; 6: 483-95.
-
(2004)
Dev Cell.
, vol.6
, pp. 483-495
-
-
McBeath, R.1
Pirone, D.M.2
Nelson, C.M.3
-
16
-
-
33747152561
-
Matrix elasticity directs stem cell lineage specification
-
Engler AJ, Sen S, Sweeney HL, et al Matrix elasticity directs stem cell lineage specification. Cell. 2006; 126: 677-89.
-
(2006)
Cell.
, vol.126
, pp. 677-689
-
-
Engler, A.J.1
Sen, S.2
Sweeney, H.L.3
-
17
-
-
0024315634
-
Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix
-
Ingber DE, Folkman J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol. 1989; 109: 317-30.
-
(1989)
J Cell Biol.
, vol.109
, pp. 317-330
-
-
Ingber, D.E.1
Folkman, J.2
-
18
-
-
33644967727
-
Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels
-
Matthews BD, Overby DR, Mannix R, et al Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci. 2006; 119: 508-18.
-
(2006)
J Cell Sci.
, vol.119
, pp. 508-518
-
-
Matthews, B.D.1
Overby, D.R.2
Mannix, R.3
-
19
-
-
0030953763
-
Geometric control of cell life and death
-
Chen CS, Mrksich M, Huang S, et al Geometric control of cell life and death. Science. 1997; 276: 1425-8.
-
(1997)
Science.
, vol.276
, pp. 1425-1428
-
-
Chen, C.S.1
Mrksich, M.2
Huang, S.3
-
20
-
-
12344296398
-
Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension
-
Moore KA, Polte T, Huang S, et al Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension. Dev Dyn. 2005; 232: 268-81.
-
(2005)
Dev Dyn.
, vol.232
, pp. 268-281
-
-
Moore, K.A.1
Polte, T.2
Huang, S.3
-
21
-
-
0028954485
-
Regulation of endothelial cell morphogenesis by integrins, mechanical forces, and matrix guidance pathways
-
Davis GE, Camarillo CW. Regulation of endothelial cell morphogenesis by integrins, mechanical forces, and matrix guidance pathways. Exp Cell Res. 1995; 216: 113-23.
-
(1995)
Exp Cell Res.
, vol.216
, pp. 113-123
-
-
Davis, G.E.1
Camarillo, C.W.2
-
22
-
-
0024439457
-
How does extracellular matrix control capillary morphogenesis?
-
Ingber DE, Folkman J. How does extracellular matrix control capillary morphogenesis? Cell. 1989; 58: 803-5.
-
(1989)
Cell.
, vol.58
, pp. 803-805
-
-
Ingber, D.E.1
Folkman, J.2
-
23
-
-
67149083435
-
Biomechanical regulation of blood vessel growth during tissue vascularization
-
Kilarski WW, Samolov B, Petersson L, et al Biomechanical regulation of blood vessel growth during tissue vascularization. Nat Med. 2009; 15: 657-64.
-
(2009)
Nat Med.
, vol.15
, pp. 657-664
-
-
Kilarski, W.W.1
Samolov, B.2
Petersson, L.3
-
24
-
-
0037428084
-
Tube morphogenesis: making and shaping biological tubes
-
Lubarsky B, Krasnow MA. Tube morphogenesis: making and shaping biological tubes. Cell. 2003; 112: 19-28.
-
(2003)
Cell.
, vol.112
, pp. 19-28
-
-
Lubarsky, B.1
Krasnow, M.A.2
-
25
-
-
33747139066
-
Endothelial tubes assemble from intracellular vacuoles in vivo
-
Kamei M, Brian SW, Bayless KJ, et al Endothelial tubes assemble from intracellular vacuoles in vivo. Nature. 2006; 442: 453-6.
-
(2006)
Nature.
, vol.442
, pp. 453-456
-
-
Kamei, M.1
Brian, S.W.2
Bayless, K.J.3
-
27
-
-
0037087648
-
The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices
-
Bayless KJ, Davis GE. The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices. J Cell Sci. 2002; 115: 1123-36.
-
(2002)
J Cell Sci.
, vol.115
, pp. 1123-1136
-
-
Bayless, K.J.1
Davis, G.E.2
-
28
-
-
0029967619
-
An α2β1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix
-
Davis GE, Camarillo CW. An α2β1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp Cell Res. 1996; 224: 39-51.
-
(1996)
Exp Cell Res.
, vol.224
, pp. 39-51
-
-
Davis, G.E.1
Camarillo, C.W.2
-
29
-
-
59649104201
-
Cellular and molecular mechanisms of vascular lumen formation
-
Iruela-Arispe ML, Davis GE. Cellular and molecular mechanisms of vascular lumen formation. Dev Cell. 2009; 16: 222-31.
-
(2009)
Dev Cell.
, vol.16
, pp. 222-231
-
-
Iruela-Arispe, M.L.1
Davis, G.E.2
-
30
-
-
0037369238
-
Membrane-type matrix metalloproteinase-mediated angiogenesis in a fibrin-collagen matrix
-
Collen A, Hanemaaijer R, Lupu F, et al Membrane-type matrix metalloproteinase-mediated angiogenesis in a fibrin-collagen matrix. Blood. 2003; 101: 1810-7.
-
(2003)
Blood.
, vol.101
, pp. 1810-1817
-
-
Collen, A.1
Hanemaaijer, R.2
Lupu, F.3
-
31
-
-
0035813126
-
Membrane type 1-matrix metalloproteinase is activated during migration of human endothelial cells and modulates endothelial motility and matrix remodeling
-
Gálvez BG, Mat#236;as-Román S, Albar JP, et al Membrane type 1-matrix metalloproteinase is activated during migration of human endothelial cells and modulates endothelial motility and matrix remodeling. J Biol Chem. 2001; 276: 37491-500.
-
(2001)
J Biol Chem.
, vol.276
, pp. 37491-37500
-
-
Gálvez, B.G.1
Mat#2362
as-Román, S.3
Albar, J.P.4
-
32
-
-
0031959973
-
Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size
-
Romanic AM, White RF, Arleth AJ, et al Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke. 1998; 29: 1020-30.
-
(1998)
Stroke.
, vol.29
, pp. 1020-1030
-
-
Romanic, A.M.1
White, R.F.2
Arleth, A.J.3
-
33
-
-
0028063408
-
Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques
-
Galis ZS, Sukhova GK, Lark MW, et al Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994; 94: 2493-503.
-
(1994)
J Clin Invest.
, vol.94
, pp. 2493-2503
-
-
Galis, Z.S.1
Sukhova, G.K.2
Lark, M.W.3
-
34
-
-
7244242362
-
Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood
-
Ingram DA, Mead LE, Tanaka H, et al Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood. 2004; 104: 2752-60.
-
(2004)
Blood.
, vol.104
, pp. 2752-2760
-
-
Ingram, D.A.1
Mead, L.E.2
Tanaka, H.3
-
35
-
-
33847348148
-
Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals
-
Yoder MC, Mead LE, Prater D, et al Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood. 2007; 109: 1801-9.
-
(2007)
Blood.
, vol.109
, pp. 1801-1809
-
-
Yoder, M.C.1
Mead, L.E.2
Prater, D.3
-
36
-
-
54449093958
-
Isolation and characterization of endothelial progenitor cells from human blood
-
Mead LE, Prater D, Yoder MC, et al Isolation and characterization of endothelial progenitor cells from human blood. Curr Protoc Stem Cell Biol. 2008; 2: 2C.1.
-
(2008)
Curr Protoc Stem Cell Biol
, vol.2
-
-
Mead, L.E.1
Prater, D.2
Yoder, M.C.3
-
37
-
-
34249704141
-
Working hypothesis to redefine endothelial progenitor cells
-
Prater DN, Case J, Ingram DA, et al Working hypothesis to redefine endothelial progenitor cells. Leukemia. 2007; 21: 1141-9.
-
(2007)
Leukemia.
, vol.21
, pp. 1141-1149
-
-
Prater, D.N.1
Case, J.2
Ingram, D.A.3
-
38
-
-
58649108952
-
Endothelial progenitor cells: identity defined?
-
Timmermans F, Plum J, Yöder MC, et al Endothelial progenitor cells: identity defined? J Cell Mol Med. 2009; 13: 87-102.
-
(2009)
J Cell Mol Med.
, vol.13
, pp. 87-102
-
-
Timmermans, F.1
Plum, J.2
Yöder, M.C.3
-
39
-
-
61949297156
-
Rheological properties of cross-linked hyaluronan-gelatin hydrogels for tissue engineering
-
Vanderhooft JL, Alcoutlabi M, Magda JJ, et al Rheological properties of cross-linked hyaluronan-gelatin hydrogels for tissue engineering. Macromol Biosci. 2009; 9: 20-8.
-
(2009)
Macromol Biosci.
, vol.9
, pp. 20-28
-
-
Vanderhooft, J.L.1
Alcoutlabi, M.2
Magda, J.J.3
-
40
-
-
33845448336
-
An extended relationship for the characterization of Young's modulus and Poisson's ratio of tunable polyacrylamide gels
-
Boudou T, Ohayon J, Picart C, et al An extended relationship for the characterization of Young's modulus and Poisson's ratio of tunable polyacrylamide gels. Biorheology. 2006; 43: 721-8.
-
(2006)
Biorheology.
, vol.43
, pp. 721-728
-
-
Boudou, T.1
Ohayon, J.2
Picart, C.3
-
41
-
-
40949135683
-
Conventional and immunoelectron microscopy of mitochondria
-
Perkins EM, McCaffery JM. Conventional and immunoelectron microscopy of mitochondria. Methods Mol Biol. 2007; 372: 467-83.
-
(2007)
Methods Mol Biol.
, vol.372
, pp. 467-483
-
-
Perkins, E.M.1
McCaffery, J.M.2
-
42
-
-
33845476283
-
Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering
-
Shu XZ, Ahmad S, Liu Y, et al Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering. J Biomed Mater Res A. 2006; 79: 902-12.
-
(2006)
J Biomed Mater Res
, vol.79 A
, pp. 902-912
-
-
Shu, X.Z.1
Ahmad, S.2
Liu, Y.3
-
43
-
-
34547479732
-
Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells
-
Gerecht S, Burdick JA, Ferreira LS, et al Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA. 2007; 104: 11298-303.
-
(2007)
Proc Natl Acad Sci USA.
, vol.104
, pp. 11298-11303
-
-
Gerecht, S.1
Burdick, J.A.2
Ferreira, L.S.3
-
44
-
-
38949129769
-
Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels
-
Au P, Daheron LM, Duda DG, et al Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood. 2008; 111: 1302-5.
-
(2008)
Blood.
, vol.111
, pp. 1302-1305
-
-
Au, P.1
Daheron, L.M.2
Duda, D.G.3
-
45
-
-
38449106637
-
Enhancement of in vitro capillary tube formation by substrate nanotopography
-
Bettinger CJ, Zhang Z, Gerecht S, et al Enhancement of in vitro capillary tube formation by substrate nanotopography. Adv Mater. 2008; 20: 99-103.
-
(2008)
Adv Mater.
, vol.20
, pp. 99-103
-
-
Bettinger, C.J.1
Zhang, Z.2
Gerecht, S.3
-
46
-
-
51649099800
-
Assessing identity, phenotype, and fate of endothelial progenitor cells
-
Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2008; 28: 1584-95.
-
(2008)
Arterioscler Thromb Vasc Biol.
, vol.28
, pp. 1584-1595
-
-
Hirschi, K.K.1
Ingram, D.A.2
Yoder, M.C.3
-
47
-
-
34548335261
-
Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo
-
Ferreira LS, Gerecht S, Shieh HF, et al Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. Circ Res. 2007; 101: 286-94.
-
(2007)
Circ Res.
, vol.101
, pp. 286-294
-
-
Ferreira, L.S.1
Gerecht, S.2
Shieh, H.F.3
-
49
-
-
9444274032
-
MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix
-
Chun TH, Sabeh F, Ota I, et al MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. J Cell Biol. 2004; 167: 757-67.
-
(2004)
J Cell Biol.
, vol.167
, pp. 757-767
-
-
Chun, T.H.1
Sabeh, F.2
Ota, I.3
-
50
-
-
33749542764
-
Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3
-
Saunders WB, Bohnsack BL, Faske JB, et al Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J Cell Biol. 2006; 175: 179-91.
-
(2006)
J Cell Biol.
, vol.175
, pp. 179-191
-
-
Saunders, W.B.1
Bohnsack, B.L.2
Faske, J.B.3
-
51
-
-
27944479854
-
Rho GTPases: biochemistry and biology
-
Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005; 21: 247-69.
-
(2005)
Annu Rev Cell Dev Biol.
, vol.21
, pp. 247-269
-
-
Jaffe, A.B.1
Hall, A.2
-
52
-
-
41949104623
-
Rho signaling and mechanical control of vascular development
-
Mammoto A, Mammoto T, Ingber DE. Rho signaling and mechanical control of vascular development. Curr Opin Hematol. 2008; 15: 228-34.
-
(2008)
Curr Opin Hematol.
, vol.15
, pp. 228-234
-
-
Mammoto, A.1
Mammoto, T.2
Ingber, D.E.3
-
54
-
-
4143052506
-
Endothelial progenitor cells: characterization and role in vascular biology
-
Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 2004; 95: 343-53.
-
(2004)
Circ Res.
, vol.95
, pp. 343-353
-
-
Urbich, C.1
Dimmeler, S.2
-
55
-
-
0033917881
-
Cell movement is guided by the rigidity of the substrate
-
Lo CM, Wang HB, Dembo M, et al Cell movement is guided by the rigidity of the substrate. Biophys J. 2000; 79: 144-52.
-
(2000)
Biophys J.
, vol.79
, pp. 144-152
-
-
Lo, C.M.1
Wang, H.B.2
Dembo, M.3
-
56
-
-
27944497333
-
Tissue cells feel and respond to the stiffness of their substrate
-
Discher DE, Janmey P, Wang Y-l. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005; 310: 1139-43.
-
(2005)
Science.
, vol.310
, pp. 1139-1143
-
-
Discher, D.E.1
Janmey, P.2
Wang, Y.3
-
57
-
-
33750476655
-
Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties
-
Ghosh K, Pan Z, Guan E, et al Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties. Biomaterials. 2007; 28: 671-9.
-
(2007)
Biomaterials.
, vol.28
, pp. 671-679
-
-
Ghosh, K.1
Pan, Z.2
Guan, E.3
-
58
-
-
2942751900
-
The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro
-
Sieminski AL, Hebbel RP, Gooch KJ. The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp Cell Res. 2004; 297: 574-84.
-
(2004)
Exp Cell Res.
, vol.297
, pp. 574-584
-
-
Sieminski, A.L.1
Hebbel, R.P.2
Gooch, K.J.3
-
59
-
-
0037112468
-
Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology
-
Ingber DE. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res. 2002; 91: 877-87.
-
(2002)
Circ Res.
, vol.91
, pp. 877-887
-
-
Ingber, D.E.1
-
60
-
-
19944402914
-
Endothelial cell regulation of matrix metalloproteinases
-
Haas TL. Endothelial cell regulation of matrix metalloproteinases. Can J Physiol Pharmacol. 2005; 83: 1-7.
-
(2005)
Can J Physiol Pharmacol.
, vol.83
, pp. 1-7
-
-
Haas, T.L.1
-
61
-
-
0344912596
-
Cell locomotion and focal adhesions are regulated by substrate flexibility
-
Pelham Jr RJ, Wang YL. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA. 1997; 94: 13661-5.
-
(1997)
Proc Natl Acad Sci USA.
, vol.94
, pp. 13661-13665
-
-
Pelham Jr, R.J.1
Wang, Y.L.2
-
62
-
-
53449092587
-
Cdc42 and RhoA have opposing roles in regulating membrane type 1-matrix metalloproteinase localization and matrix metalloproteinase-2 activation
-
Ispanovic E, Serio D, Haas TL. Cdc42 and RhoA have opposing roles in regulating membrane type 1-matrix metalloproteinase localization and matrix metalloproteinase-2 activation. Am J Physiol Cell Physiol. 2008; 295: C600-10.
-
(2008)
Am J Physiol Cell Physiol
, vol.295
-
-
Ispanovic, E.1
Serio, D.2
Haas, T.L.3
|