메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1150-1161

Applications of fault diagnosis in nuclear power plants: An introductory survey

Author keywords

Fault detection; Fault diagnosis; Nuclear plants

Indexed keywords

FAULT DETECTION; NUCLEAR ENERGY; NUCLEAR FUELS; NUCLEAR INDUSTRY; NUCLEAR POWER PLANTS;

EID: 77957364248     PISSN: 14746670     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3182/20090630-4-es-2003.00189     Document Type: Conference Paper
Times cited : (14)

References (99)
  • 2
    • 77953003048 scopus 로고    scopus 로고
    • Retrieved Oct 28, 2008
    • Fact Sheet on the Three Mile Island Accident. (n.d.). Retrieved Oct 28, 2008, from United States Nuclear Regulatory Commission: http://www.nrc.gov/ reading-rm/doc-collections/fact-sheets/3mile-isle.html.
    • Fact Sheet on the Three Mile Island Accident. (n.d.)
  • 3
    • 23344442258 scopus 로고    scopus 로고
    • Lessons learned from the U.S. nuclear power plant on-line monitoring programs
    • DOI 10.1016/j.pnucene.2005.03.003, PII S0149197005000181, Computational Intelligence in Nuclear Applications: Lessons Learned and Recent Developments
    • Hines, J. W., & Davis, E. (2005). Lessons Learned from the U.S. Nuclear Power Plant On-Line Monitoring Programs. Progress in Nuclear Energy, 46, 176-189. (Pubitemid 41101263)
    • (2005) Progress in Nuclear Energy , vol.46 , Issue.3-4 , pp. 176-189
    • Hines, J.W.1    Davis, E.2
  • 5
    • 85184641338 scopus 로고    scopus 로고
    • MSET modeling of crystal river-3 venturi flow meters
    • Paper presented at May 10-15, San Diego, CA, USA
    • Herzog, J. P., Wegerich, S. W., & Gross, K. (1998). MSET Modeling of Crystal River-3 Venturi Flow Meters. Paper presented at ICONE-6. May 10-15, San Diego, CA, USA.
    • (1998) ICONE-6
    • Herzog, J.P.1    Wegerich, S.W.2    Gross, K.3
  • 6
    • 33747761649 scopus 로고    scopus 로고
    • Neural network correlation for power peak factor estimation
    • DOI 10.1016/j.anucene.2006.02.007, PII S0306454906000417
    • Souza, R. M., & Moreira, J. M. (2006). Neural Network Correlation for Power Peak Factor Estimation. Annals of Nuclear Energy, 33, 594-608. (Pubitemid 44275217)
    • (2006) Annals of Nuclear Energy , vol.33 , Issue.7 , pp. 594-608
    • Souza, R.M.G.P.1    Moreira, J.M.L.2
  • 8
    • 0037740721 scopus 로고    scopus 로고
    • Regular neutron noise diagnostics measurements at the hungarian paks NPP
    • Czibok, T., Kiss, G., Kiss, S., Krinizs, K., & Végh, J. (2003). Regular Neutron Noise Diagnostics Measurements at the Hungarian Paks NPP. Progress in Nuclear Energy, 43, 67-74.
    • (2003) Progress in Nuclear Energy , vol.43 , pp. 67-74
    • Czibok, T.1    Kiss, G.2    Kiss, S.3    Krinizs, K.4    Végh, J.5
  • 9
    • 77952013130 scopus 로고
    • Core power monitoring system based on fixed in-core systems
    • Oct 22-27, Arlington, VA, USA
    • Banda, L., & Bollacassa, D. (1990). Core Power Monitoring System Based on Fixed In-Core Systems. Conference Record of 1990 IEEE Nuclear Science Symposium, (pp. 1049-1054). Oct 22-27, Arlington, VA, USA.
    • (1990) Conference Record of 1990 IEEE Nuclear Science Symposium , pp. 1049-1054
    • Banda, L.1    Bollacassa, D.2
  • 10
    • 77952059096 scopus 로고    scopus 로고
    • Retrieved July 09, 2008
    • Rouben, B. (n.d.). CANDU Fuel Management Course. Retrieved July 09, 2008, from CANTEACH: http://canteach.candu.org/library/20031101.pdf.
    • CANDU Fuel Management Course
    • Rouben, B.1
  • 11
    • 33645278780 scopus 로고    scopus 로고
    • Research Triangle Park, NC: The Instrumentation, Systems, and Automation Society
    • Hashemian, H. M. (2004). Sensor Performance and Reliability. Research Triangle Park, NC: The Instrumentation, Systems, and Automation Society.
    • (2004) Sensor Performance and Reliability
    • Hashemian, H.M.1
  • 14
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Kramer, M. A. (1991). Nonlinear Principal Component Analysis Using Autoassociative Neural Networks. AIChE Journal, 37, 233-243.
    • (1991) AIChE Journal , vol.37 , pp. 233-243
    • Kramer, M.A.1
  • 16
    • 0037740731 scopus 로고    scopus 로고
    • On-line monitoring of instrument channel performance in nuclear power plant using PEANO
    • Fantoni, P. F. (2003). On-line Monitoring of Instrument Channel Performance in Nuclear Power Plant Using PEANO. Progress in Nuclear Energy, 43, 83-89.
    • (2003) Progress in Nuclear Energy , vol.43 , pp. 83-89
    • Fantoni, P.F.1
  • 17
    • 23344453352 scopus 로고    scopus 로고
    • Experiences and applications of PEANO for online monitoring in power plants
    • DOI 10.1016/j.pnucene.2005.03.005, PII S014919700500020X, Computational Intelligence in Nuclear Applications: Lessons Learned and Recent Developments
    • Fantoni, P. F. (2005). Experiences and Applications of PEANO for Online Monitoring in Power Plants. Progress in Nuclear Energy, 46, 206-225. (Pubitemid 41101265)
    • (2005) Progress in Nuclear Energy , vol.46 , Issue.3-4 , pp. 206-225
    • Fantoni, P.F.1
  • 18
    • 0013289576 scopus 로고    scopus 로고
    • Artificial neural networks modeling as a dignostic and decision making tool
    • D. Ruan, & P. F. Fantoni (Eds.) Springer
    • Boger, Z. (2002). Artificial Neural Networks Modeling as a Dignostic and Decision Making Tool. In D. Ruan, & P. F. Fantoni (Eds.), Power Plant Surveillance and Diagnostics: Applied Research with Artificial Intelligence (pp. 243-252). Springer.
    • (2002) Power Plant Surveillance and Diagnostics: Applied Research with Artificial Intelligence , pp. 243-252
    • Boger, Z.1
  • 19
    • 2142760945 scopus 로고    scopus 로고
    • Enhancing cross-correlation analysis with artificial neural networks for NPP feedwater flow measurement
    • Roverso, D., & Ruan, D. (2004). Enhancing Cross-Correlation Analysis with Artificial Neural Networks for NPP Feedwater Flow Measurement. Real-Time Systems, 27, 85-96.
    • (2004) Real-time Systems , vol.27 , pp. 85-96
    • Roverso, D.1    Ruan, D.2
  • 20
    • 0032070945 scopus 로고    scopus 로고
    • Quick and reliable estimation of power distribution in a PHWR by ANN
    • PII S0306454997001060
    • Dubey, B. P., Jagannathan, V., & Kataria, S. K. (1998). Quick and Reliable Estimation of Power Distribution in a PHWR by ANN. Annals of Nuclear Energy, 25, 567-579. (Pubitemid 128393806)
    • (1998) Annals of Nuclear Energy , vol.25 , Issue.8 , pp. 567-579
    • Dubey, B.P.1    Jagannathan, V.2    Kataria, S.K.3
  • 21
    • 0032167275 scopus 로고    scopus 로고
    • Determination of PWR control rod position by core physics and neural network methods
    • Garis, N. S., Pázsit, I., Sandberg, U., & Andersson, T. (1998). Determination of PWR Control Rod Position by Core Physics and Neural Network Methods. Nuclear Technology, 123, 278-295.
    • (1998) Nuclear Technology , vol.123 , pp. 278-295
    • Garis, N.S.1    Pázsit, I.2    Sandberg, U.3    Andersson, T.4
  • 22
    • 8844241698 scopus 로고    scopus 로고
    • Diagnostics and surveillance methods in nuclear systems for real-time applications
    • Pázsit, I. (2004). Diagnostics and Surveillance Methods in Nuclear Systems for Real-Time Applications. Real-Time Systems, 27, 97-113.
    • (2004) Real-time Systems , vol.27 , pp. 97-113
    • Pázsit, I.1
  • 24
    • 0028699744 scopus 로고
    • Nuclear power plants transient diagnostics using LVQ or some networks don't know that they don't know
    • Jun 26-29, Orlando, FL, USA
    • Bartal, Y., Lin, J., & Uhrig, R. E. (1994). Nuclear Power Plants Transient Diagnostics Using LVQ or Some Networks Don't Know that They Don't Know. IEEE World Congress on Computational Intelligence, (pp. 3744-3749). Jun 26-29, Orlando, FL, USA.
    • (1994) IEEE World Congress on Computational Intelligence , pp. 3744-3749
    • Bartal, Y.1    Lin, J.2    Uhrig, R.E.3
  • 25
    • 2942687569 scopus 로고    scopus 로고
    • Hybrid identification of nuclear power plant transients with artificial neural networks
    • Embrechts, M. J., & Benedek, S. (2004). Hybrid Identification of Nuclear Power Plant Transients with Artificial Neural Networks. IEEE Transactions on Industrial Electronics, 51, 686-693.
    • (2004) IEEE Transactions on Industrial Electronics , vol.51 , pp. 686-693
    • Embrechts, M.J.1    Benedek, S.2
  • 26
    • 0036671729 scopus 로고    scopus 로고
    • Plant diagnostics by transient classification: The ALADDIN approach
    • DOI 10.1002/int.10049
    • Roverso, D. (2002). Plant Diagnostics by Transient Classification: the ALADDIN Approach. International Journal of Intelligent Systems, 17, 767-790. (Pubitemid 35023099)
    • (2002) International Journal of Intelligent Systems , vol.17 , Issue.8 , pp. 767-790
    • Roverso, D.1
  • 27
    • 23344454801 scopus 로고    scopus 로고
    • Modern methods of signal processing in the loose part monitoring system
    • DOI 10.1016/j.pnucene.2005.03.008, PII S0149197005000235, Computational Intelligence in Nuclear Applications: Lessons Learned and Recent Developments
    • Figedy, S., & Oksa, G. (2005). Modern Methods of Signal Processing in the Loose Part Monitoring System. Progress in Nuclear Energy, 46, 253-267. (Pubitemid 41101268)
    • (2005) Progress in Nuclear Energy , vol.46 , Issue.3-4 , pp. 253-267
    • Figedy, S.1    Oksa, G.2
  • 28
    • 85184632973 scopus 로고    scopus 로고
    • (n.d.). Retrieved August 06, 2008
    • Research and Expertise in Computer Codes: MSET. (n.d.). Retrieved August 06, 2008, from Argonne National Laboratory: http://www.ne.anl.gov/codes/mset/.
    • Research and Expertise in Computer Codes: Mset
  • 29
    • 85184645110 scopus 로고    scopus 로고
    • Detection of incipient signal or process faults in co-generation plant using the plant ECM system
    • D. Ruan, & P. F. Fantoni (Eds.) Springer
    • Nieman, w., & Singer, R. (2002). Detection of Incipient Signal or Process Faults in Co-Generation Plant Using the Plant ECM System. In D. Ruan, & P. F. Fantoni (Eds.), Power Plant Surveillance and Diagnostics: Applied Research with Artificial Intelligence (pp. 121-134). Springer.
    • (2002) Power Plant Surveillance and Diagnostics: Applied Research with Artificial Intelligence , pp. 121-134
    • Nieman, W.1    Singer, R.2
  • 31
    • 58349122019 scopus 로고    scopus 로고
    • Sensor fault detection in nuclear power plants using multivariate state estimation technique and support vector machines
    • Presentation at Oct 2-5, Belgrade, Yugoslavia
    • Zavaljevskl, N., & Gross, K. C. (2000). Sensor Fault Detection in Nuclear Power Plants Using Multivariate State Estimation Technique and Support Vector Machines. Presentation at the Third International Conference of the Yugoslav Nuclear Society YUNSC 2000. Oct 2-5, Belgrade, Yugoslavia.
    • (2000) The Third International Conference of the Yugoslav Nuclear Society YUNSC 2000
    • Zavaljevskl, N.1    Gross, K.C.2
  • 34
    • 0030530039 scopus 로고    scopus 로고
    • The process chemometrics approach to process monitoring and fault detection
    • DOI 10.1016/0959-1524(96)00009-1, PII S0950152496000091
    • Wise, B. M., & Gallagher, N. B. (1996). The Process Chemometrics Approach to Process Monitoring and Fault Detection. Journal of Process Control, 6, 329-348. (Pubitemid 126375552)
    • (1996) Journal of Process Control , vol.6 , Issue.6 , pp. 329-348
    • Wise, B.M.1    Gallagher, N.B.2
  • 35
    • 0030269512 scopus 로고    scopus 로고
    • Identification of faulty sensors using principal component analysis
    • Dunia, R., Qin, S. J., Edgar, T. F., & McAvoy, T. J. (1996). Identification of Faulty Sensors Using Principal Component Analysis. AIChE Journal, 42, 2797-2812.
    • (1996) AIChE Journal , vol.42 , pp. 2797-2812
    • Dunia, R.1    Qin, S.J.2    Edgar, T.F.3    McAvoy, T.J.4
  • 36
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis-based on principal curves and neural networks
    • Dong, D., & McAvoy, T. J. (1996). Nonlinear Principal Component Analysis-Based on Principal Curves and Neural Networks. Computers & Chemical Engineering, 20, 65-78.
    • (1996) Computers & Chemical Engineering , vol.20 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 37
    • 0033083952 scopus 로고    scopus 로고
    • Isolation enhanced principal component analysis
    • Gertler, J., Li, W., Huang, Y., & McAvoy, T. (2004). Isolation Enhanced Principal Component Analysis. AIChE Journal, 45, 323 - 334.
    • (2004) AIChE Journal , vol.45 , pp. 323-334
    • Gertler, J.1    Li, W.2    Huang, Y.3    McAvoy, T.4
  • 38
    • 0034770510 scopus 로고    scopus 로고
    • Incipient fault detection and isolation of field devices in nuclear power systems using principal component analysis
    • Kaistha, N., & Upadhyaya, B. R. (2001). Incipient Fault Detection and Isolation of Field Devices in Nuclear Power Systems Using Principal Component Analysis. Nuclear Technology, 136, 221-230. (Pubitemid 33013753)
    • (2001) Nuclear Technology , vol.136 , Issue.2 , pp. 221-230
    • Kaistha, N.1    Upadhyaya, B.R.2
  • 39
    • 0037740660 scopus 로고    scopus 로고
    • Fault monitoring of nuclear power plant sensors and field devices
    • Upadhyaya, B. R., Zhao, K., & Lu, B. (2003). Fault Monitoring of Nuclear Power Plant Sensors and Field Devices. Progress in Nuclear Energy, 43, 337-342.
    • (2003) Progress in Nuclear Energy , vol.43 , pp. 337-342
    • Upadhyaya, B.R.1    Zhao, K.2    Lu, B.3
  • 40
    • 2142695187 scopus 로고    scopus 로고
    • Redundant sensor calibration monitoring using independent component analysis and principal component analysis
    • Ding, J., Gribok, A. V., Hines, J. W., & Rasmusse, B. (2004). Redundant Sensor Calibration Monitoring Using Independent Component Analysis and Principal Component Analysis. Real-Time Systems, 27, 27-47.
    • (2004) Real-time Systems , vol.27 , pp. 27-47
    • Ding, J.1    Gribok, A.V.2    Hines, J.W.3    Rasmusse, B.4
  • 41
    • 17644382295 scopus 로고    scopus 로고
    • Monitoring and fault diagnosis of the steam generator system of a nuclear power plant using data-driven modeling and residual space analysis
    • DOI 10.1016/j.anucene.2005.02.003, PII S0306454905000575
    • Lu, B., & Upadhyaya, B. (2005). Monitoring and Fault Diagnosis of the Steam Generator System of A Nuclear Power Plant Using A Data-Driven Modeling and Residual Space Analysis. Annals of Nuclear Energy, 32, 897-912. (Pubitemid 40556394)
    • (2005) Annals of Nuclear Energy , vol.32 , Issue.9 , pp. 897-912
    • Lu, B.1    Upadhyaya, B.R.2
  • 43
    • 0017517389 scopus 로고
    • Theoretical investigation of the local and global components of the neutron-noise field in a boiling water reactor
    • Behringer, K., Kosaly, G., & Kostic, L. (1977). Theoretical Investigation of the Local and Global Components of the Neutron-Noise Field in a Boiling Water Reactor. Nuclear Science and Engineering, 63, 306-318.
    • (1977) Nuclear Science and Engineering , vol.63 , pp. 306-318
    • Behringer, K.1    Kosaly, G.2    Kostic, L.3
  • 44
    • 79960930187 scopus 로고    scopus 로고
    • On-line estimation of local and total core flow rates by neutron noise analysis in BWR
    • Oct 14-17, Mito-shi, Japan
    • Mori, M., Kanemoto, S., Enomoto, M., & Ebata, S. (1996). On-Line Estimation of Local and Total Core Flow Rates by Neutron Noise Analysis in BWR. Proceedings of INCORE-96. Oct 14-17, Mito-shi, Japan.
    • (1996) Proceedings of INCORE-96
    • Mori, M.1    Kanemoto, S.2    Enomoto, M.3    Ebata, S.4
  • 45
    • 0038754870 scopus 로고    scopus 로고
    • Flow measurements by noise analysis of thermocouple signals from the BOCA experiment at the studsvik R2 reactor
    • Karlsson, J. K.-H., Moren, M., Jonsson, B. J., Tomani, H., & Bergdahl, B.-G. (2003). Flow Measurements by Noise Analysis of Thermocouple Signals from the BOCA Experiment at the Studsvik R2 Reactor. Progress in Nuclear Energy, 43, 289-296.
    • (2003) Progress in Nuclear Energy , vol.43 , pp. 289-296
    • Karlsson, J.K.-H.1    Moren, M.2    Jonsson, B.J.3    Tomani, H.4    Bergdahl, B.-G.5
  • 47
    • 39049171685 scopus 로고    scopus 로고
    • Computational intelligence in nuclear engineering
    • Uhrig, R. E., & Hines, J. W. (2005). Computational Intelligence in Nuclear Engineering. Nuclear Engineering and Technology, 37, 127-138.
    • (2005) Nuclear Engineering and Technology , vol.37 , pp. 127-138
    • Uhrig, R.E.1    Hines, J.W.2
  • 48
    • 0038078233 scopus 로고    scopus 로고
    • Lessons learned with vibration monitoring systems in german nuclear power plants
    • Kolbasseff, A., & Sunder, R. (2003). Lessons Learned with Vibration Monitoring Systems in German Nuclear Power Plants. Progress in Nuclear Energy, 43, 159-165.
    • (2003) Progress in Nuclear Energy , vol.43 , pp. 159-165
    • Kolbasseff, A.1    Sunder, R.2
  • 49
    • 0001818505 scopus 로고    scopus 로고
    • Soft computing technologies in nuclear engineering applications
    • PII S0149197097001091
    • Uhrig, R. E., & Tsoukalas, L. H. (1999). Soft Computing Techniques in Nuclear Engineering Applications. Progress in Nuclear Energy, 34, 13-75. (Pubitemid 129540914)
    • (1999) Progress in Nuclear Energy , vol.34 , Issue.1 , pp. 13-75
    • Uhrig, R.E.1    Tsoukalas, L.H.2
  • 50
    • 0038754900 scopus 로고    scopus 로고
    • Identification of reactor internals' vibration modes of a Korean standard PWR using structural modeling and neutron noise analysis
    • Park, J., Lee, J. H., Kim, T. R., Park, J. B., Lee, S. K., Koo, I. S., et al. (2003). Identification of Reactor Internals' Vibration Modes of a Korean Standard PWR Using Structural Modeling and Neutron Noise Analysis. Progress in Nuclear Energy, 43, 177-186.
    • (2003) Progress in Nuclear Energy , vol.43 , pp. 177-186
    • Park, J.1    Lee, J.H.2    Kim, T.R.3    Park, J.B.4    Lee, S.K.5    Koo, I.S.6
  • 52
    • 0038754915 scopus 로고    scopus 로고
    • Reactor noise measurements in the safety and regulating systems of CANDU stations
    • Glöckler, O. (2003). Reactor Noise Measurements in the Safety and Regulating Systems of CANDU Stations. Progress in Nuclear Energy, 43, 75-82.
    • (2003) Progress in Nuclear Energy , vol.43 , pp. 75-82
    • Glöckler, O.1
  • 53
    • 22344449727 scopus 로고    scopus 로고
    • On-line determination of the prompt fraction of in-core neutron detectors in CANDU reactors
    • Apr 25-29, Chicago, IL, USA
    • Demazière, C., & Glöckler, O. (2004). On-Line Determination of the Prompt Fraction of In-Core Neutron Detectors in CANDU Reactors. PHYSOR 2004. Apr 25-29, Chicago, IL, USA.
    • (2004) PHYSOR 2004
    • Demazière, C.1    Glöckler, O.2
  • 54
    • 0036028106 scopus 로고    scopus 로고
    • Theoretical investigation of the MTC noise estimate in 1-D homogeneous systems
    • DOI 10.1016/S0306-4549(01)00026-3, PII S0306454901000263
    • Demazière, C., & Pázsit, I. (2002). Theoretical Investigation of the MTC Noise Estimate in 1-D Homogeneous Systems. Annals of Nuclear Energy, 29, 75-100. (Pubitemid 32867035)
    • (2002) Annals of Nuclear Energy , vol.29 , Issue.1 , pp. 75-100
    • Demaziere, C.1    Pazsit, I.2
  • 55
    • 4243282854 scopus 로고    scopus 로고
    • On-line determination of the MTC (Moderator temperature coefficient) by neutron noise and gamma-thermometer signals
    • D. Ruan, & P. F. Fantoni (Eds.) Springer
    • Demazière, C., & Pázsit, I. (2002). On-Line Determination of the MTC (Moderator Temperature Coefficient) by Neutron Noise and Gamma-Thermometer Signals. In D. Ruan, & P. F. Fantoni (Eds.), Power Plant Surveillance and Dignostics: Applied Research with Artificial Intelligence (pp. 135-156). Springer.
    • (2002) Power Plant Surveillance and Dignostics: Applied Research with Artificial Intelligence , pp. 135-156
    • Demazière, C.1    Pázsit, I.2
  • 56
    • 0038754879 scopus 로고    scopus 로고
    • A study of technique to estimate impact location of loose part using wigner-ville distribution
    • Kim, Y. B., Kim, S. J., Chung, H. D., Park, Y. W., & Part, J. H. (2003). A Study of Technique to Estimate Impact Location of Loose Part Using Wigner-Ville Distribution. Progress in Nuclear Energy, 43, 261-266.
    • (2003) Progress in Nuclear Energy , vol.43 , pp. 261-266
    • Kim, Y.B.1    Kim, S.J.2    Chung, H.D.3    Park, Y.W.4    Part, J.H.5
  • 57
    • 34047180690 scopus 로고    scopus 로고
    • Identification of nuclear components degradation by time-frequency ridge pattern
    • Albuquerque, NM, USA
    • Park, G. Y., Lee, C. K., Kim, J. T., Ryu, J. S., & Jung, H. S. (2006). Identification of Nuclear Components Degradation by Time-Frequency Ridge Pattern. NPIC&HMIT 2006, (pp. 1082-1087). Nov 12-14, Albuquerque, NM, USA.
    • (2006) NPIC&HMIT 2006 , Issue.12-14 , pp. 1082-1087
    • Park, G.Y.1    Lee, C.K.2    Kim, J.T.3    Ryu, J.S.4    Jung, H.S.5
  • 58
    • 34047136502 scopus 로고    scopus 로고
    • An improvement of mass estimation capability in loose parts monitoring by using time-frequency analysis
    • Albuquerque, NM, USA
    • Yoon, D. B., Park, J. H., Chi, Y. C., Sohn, C. H., & Park, O. K. (2006). An Improvement of Mass Estimation Capability in Loose Parts Monitoring by Using Time-Frequency Analysis. NPIC&HMIT 2006, (pp. 331-334). Nov 12-14, Albuquerque, NM, USA.
    • (2006) NPIC&HMIT 2006 , Issue.12-14 , pp. 331-334
    • Yoon, D.B.1    Park, J.H.2    Chi, Y.C.3    Sohn, C.H.4    Park, O.K.5
  • 61
    • 0021455782 scopus 로고
    • Analytical redundancy and the design of robust failure detection systems
    • Chow, E. Y., & Willsky, A. S. (1984). Analytical Redundancy and the Design of Robust Failure Detection Systems. IEEE Transactions on Automatic Control, 29, 603-614.
    • (1984) IEEE Transactions on Automatic Control , vol.29 , pp. 603-614
    • Chow, E.Y.1    Willsky, A.S.2
  • 62
    • 0024122587 scopus 로고
    • Survey of model-based failure detection and isolation in complex plants
    • Gertler, J. J. (1988). Survey of Model-Based Failure Detection and Isolation in Complex Plants. IEEE Control Systems Magazine, 8, 3-11.
    • (1988) IEEE Control Systems Magazine , vol.8 , pp. 3-11
    • Gertler, J.J.1
  • 63
    • 0025421966 scopus 로고
    • Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy - A survey and some new results
    • Frank, P. M. (1990). Fault Diagnosis in Dynamic Systems Using Analytical and Knowledge-Based Redundancy-A Survey and Some New Results. Automatica, 26, 459-474.
    • (1990) Automatica , vol.26 , pp. 459-474
    • Frank, P.M.1
  • 64
    • 0031148456 scopus 로고    scopus 로고
    • Trends in the application of model-based fault detection and diagnosis of technical processes
    • DOI 10.1016/S0967-0661(97)00053-1, PII S0967066197000531
    • Isermann, R., & Balle, P. (1997). Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes. Control Engineering Practice, 5, 709-719. (Pubitemid 27414363)
    • (1997) Control Engineering Practice , vol.5 , Issue.5 , pp. 709-719
    • Isermann, R.1    Balle, P.2
  • 65
    • 0037443770 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis part I: Quantitative model-based methods
    • DOI 10.1016/S0098-1354(02)00160-6, PII S0098135402001606
    • Venkatasubramanian, V., Rengaswamy, R., Yin, K., & Kavuri, S. N. (2003). A Review of Process Fault Detection and Diagnosis Part I: Quantitative Model-Based Methods. Computers and Chemical Engineering, 27, 293-311. (Pubitemid 36285962)
    • (2003) Computers and Chemical Engineering , vol.27 , Issue.3 , pp. 293-311
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Yin, K.3    Kavuri, S.N.4
  • 66
    • 19044365246 scopus 로고    scopus 로고
    • Model-based fault-detection and diagnosis-status and applications
    • Isermann, R. (2005). Model-Based Fault-Detection and Diagnosis-Status and Applications. Annual Reviews in Control, 29, 71-85.
    • (2005) Annual Reviews in Control , vol.29 , pp. 71-85
    • Isermann, R.1
  • 67
    • 79960923318 scopus 로고
    • Applications of Kalman filtering technique to nuclear reactors
    • Godbole, S. S. (1973). Applications of Kalman Filtering Technique to Nuclear Reactors. IEEE Transactions on Nuclear Science, 20, 661-667.
    • (1973) IEEE Transactions on Nuclear Science , vol.20 , pp. 661-667
    • Godbole, S.S.1
  • 68
    • 0020719842 scopus 로고
    • On-line failure detection in nuclear power plant instrumentation
    • Tylee, J. L. (1983). On-Line Failure Detection in Nuclear Power Plant Instrumentation. IEEE Transactions on Automatic Control, 28, 406-415. (Pubitemid 13528260)
    • (1983) IEEE Transactions on Automatic Control , vol.AC-28 , Issue.3 , pp. 406-415
    • Tylee J.Louis1
  • 69
    • 0025385493 scopus 로고
    • Instrument failure detection and estimation methodology for the nuclear power plant
    • Oh, D. Y., & No, H. C. (1990). Instrument Failure Detection and Estimation Methodology for the Nuclear Power Plant. IEEE Transactions on Nuclear Science, 37, 21-31.
    • (1990) IEEE Transactions on Nuclear Science , vol.37 , pp. 21-31
    • Oh, D.Y.1    No, H.C.2
  • 70
    • 0026243590 scopus 로고
    • Instrument failure detection and reconstruction methodology in space-time nuclear reactor dynamic systems with fixed in-core detectors
    • Oh, D. Y., No, H. C., & Kim, S. H. (1991). Instrument Failure Detection and Reconstruction Methodology in Space-Time Nuclear Reactor Dynamic Systems with Fixed In-Core Detectors. IEEE Transactions on Nuclear Science, 38, 1026-1034.
    • (1991) IEEE Transactions on Nuclear Science , vol.38 , pp. 1026-1034
    • Oh, D.Y.1    No, H.C.2    Kim, S.H.3
  • 73
    • 0342521366 scopus 로고    scopus 로고
    • Power mapping in a Canada deuterium uranium reactor using Kalman filtering technique
    • Jeong, C. J., & Cho, N. Z. (2000). Power Mapping in a Canada Deuterium Uranium Reactor Using Kalman Filtering Technique. Journal of Nuclear Science and Technology, 37, 758-768.
    • (2000) Journal of Nuclear Science and Technology , vol.37 , pp. 758-768
    • Jeong, C.J.1    Cho, N.Z.2
  • 74
    • 23344443264 scopus 로고    scopus 로고
    • Modern approaches and advanced applications for plant surveillance and diagnostics: An overview
    • D. Ruan, & P. F. Fantoni (Eds.) Springer
    • Ruan, D. (2002). Modern Approaches and Advanced Applications for Plant Surveillance and Diagnostics: An Overview. In D. Ruan, & P. F. Fantoni (Eds.), Power Plant Surveillance and Diagnostics: Applied Research with Artificial Intelligence (pp. 1-30). Springer.
    • (2002) Power Plant Surveillance and Diagnostics: Applied Research with Artificial Intelligence , pp. 1-30
    • Ruan, D.1
  • 75
    • 0030174744 scopus 로고    scopus 로고
    • Fuzzy associative memories for instrument fault detection
    • DOI 10.1016/0306-4549(95)00050-X
    • Heger, A. S., Holbert, K. E., & Ishaque, A. M. (1996). Fuzzy Associative Memories for Instrument Fault Detection. Annals of Nuclear Energy, 23, 739-756. (Pubitemid 126369901)
    • (1996) Annals of Nuclear Energy , vol.23 , Issue.9 , pp. 739-756
    • Heger, A.S.1    Holbert, K.E.2    Ishaque, A.M.3
  • 76
    • 0035307272 scopus 로고    scopus 로고
    • Pin power reconstruction for CANDU reactors using a neuro-fuzzy inference system
    • DOI 10.1109/23.915365, PII S0018949901025795
    • Na, M. G., Yang, W. S., & Choi, H. (2001). Pin Power Reconstruction for CANDU Reactors Using a Neuro-Fuzzy Inference System. IEEE Transactions on Nuclear Science, 48, 194-201. (Pubitemid 32371573)
    • (2001) IEEE Transactions on Nuclear Science , vol.48 , Issue.2 , pp. 194-201
    • Na, M.G.1    Yang, W.S.2    Choi, H.3
  • 77
    • 0038078134 scopus 로고    scopus 로고
    • Power density axial oscillations induced by xenon dynamics: Parameter identification via genetic algorithms
    • Marseguerra, M., Zio, E., & Torri, G. (2003). Power Density Axial Oscillations Induced by Xenon Dynamics: Parameter Identification via Genetic Algorithms. Progress in Nuclear Energy, 43, 365-372.
    • (2003) Progress in Nuclear Energy , vol.43 , pp. 365-372
    • Marseguerra, M.1    Zio, E.2    Torri, G.3
  • 78
    • 0037253480 scopus 로고    scopus 로고
    • Integrating physical modeling, neural computing, and statistical analysis for on-line process monitoring
    • Garcia, H., & Vilim, R. B. (2003). Integrating Physical Modeling, Neural Computing, and Statistical Analysis for On-Line Process Monitoring. Nuclear Technology, 141, 69-77.
    • (2003) Nuclear Technology , vol.141 , pp. 69-77
    • Garcia, H.1    Vilim, R.B.2
  • 79
    • 0030358471 scopus 로고    scopus 로고
    • Calibration through on-line monitoring of instrument channels
    • Anaheim, CA, USA
    • James, R. (1996). Calibration through On-Line Monitoring of Instrument Channels. Conference Record of 1996 IEEE Nuclear Science Symposium. (pp. 996-999). Nov 2-9, Anaheim, CA, USA.
    • (1996) Conference Record of 1996 IEEE Nuclear Science Symposium , Issue.2-9 , pp. 996-999
    • James, R.1
  • 80
    • 85184642348 scopus 로고    scopus 로고
    • Retrieved March 09, 2009
    • SmartSignal. (2008). Retrieved March 09, 2009, from http://www. smartsignal.com/.
    • (2008)
  • 81
    • 8844224316 scopus 로고    scopus 로고
    • Nonlinear partial least squares modeling for instrument surveillance and calibration verification
    • May 7-10, Knoxville, TN, USA
    • Rasmussen, B., Hines, J. W., & Uhrig, R. E. (2000). Nonlinear Partial Least Squares Modeling for Instrument Surveillance and Calibration Verification. The Maintenance and Reliability Conference (MARCON 2000). May 7-10, Knoxville, TN, USA.
    • (2000) The Maintenance and Reliability Conference (MARCON 2000)
    • Rasmussen, B.1    Hines, J.W.2    Uhrig, R.E.3
  • 82
    • 79751526027 scopus 로고    scopus 로고
    • The use of non-linear partial least squares methods for on-line process monitoring as an alternative to artificial neural networks
    • Sep 16-19, Gent, Belgium
    • Fantoni, P. F., Hoffmann, M., Rasmussen, B., & Hines, J. W. (2002). The Use of Non-Linear Partial Least Squares Methods for On-Line Process Monitoring as an Alternative to Artificial Neural Networks. FLINS 2002, (pp. 1-10). Sep 16-19, Gent, Belgium.
    • (2002) FLINS 2002 , pp. 1-10
    • Fantoni, P.F.1    Hoffmann, M.2    Rasmussen, B.3    Hines, J.W.4
  • 83
    • 0036671802 scopus 로고    scopus 로고
    • Heuristic, systematic, and informational regularization for process monitoring
    • DOI 10.1002/int.10047
    • Gribok, A. V., Hines, J. W., Urmanov, A., & Uhrig, R. E. (2002). Heuristic, Systematic, and Informational Regularization for Process Monitoring. International Journal of Intelligent Systems, 17, 723-749. (Pubitemid 35023097)
    • (2002) International Journal of Intelligent Systems , vol.17 , Issue.8 , pp. 723-749
    • Gribok, A.V.1    Hines, J.W.2    Urmanov, A.3    Uhrig, R.E.4
  • 84
    • 34547877387 scopus 로고    scopus 로고
    • MSET performance optimization through regularization
    • Hines, J. W., & Usynin, A. (2005). MSET Performance Optimization through Regularization. Nuclear Engineering and Technology, 37, 177-184.
    • (2005) Nuclear Engineering and Technology , vol.37 , pp. 177-184
    • Hines, J.W.1    Usynin, A.2
  • 87
    • 0342924684 scopus 로고
    • Neutron noise analysis for PWR core motion monitoring
    • I. Y.
    • Yun, W. Y., B. J. Koh, I. Y., & No, H. C. (1988). Neutron Noise Analysis for PWR Core Motion Monitoring. Journal of the Korean Nuclear Society, 20, 253-264.
    • (1988) Journal of the Korean Nuclear Society , vol.20 , pp. 253-264
    • Yun, W.Y.1    Koh, B.J.2    No, H.C.3
  • 88
    • 38249030037 scopus 로고
    • Operational and economical experience with vibration and loose parts monitoring systems on primary circuits of PWRs
    • Michela, B., & Puyala, C. (1988). Operational and Economical Experience with Vibration and Loose Parts Monitoring Systems on Primary Circuits of PWRs. Progress in Nuclear Energy, 21, 469-473.
    • (1988) Progress in Nuclear Energy , vol.21 , pp. 469-473
    • Michela, B.1    Puyala, C.2
  • 89
  • 90
    • 0038184423 scopus 로고    scopus 로고
    • Analysis of measurements made by HELPS loose part detection system during installation and operation periods
    • PII S0149197098000043
    • Szappanos, G., Kiss, J. J., Por, G., & Kiss, J. M. (1999). Analysis of Measurements Made by HELPS Loose Part Detection System during Installation and Operation Periods. Progress in Nuclear Energy, 34, 185-193. (Pubitemid 129665163)
    • (1999) Progress in Nuclear Energy , vol.34 , Issue.3 , pp. 185-193
    • Szappanos, G.1    Kiss, J.J.2    Por, G.3    Kiss, J.M.4
  • 91
    • 9344240400 scopus 로고    scopus 로고
    • KUES '95 - The modern diagnostic system for loose parts monitoring
    • PII S0149197098000080
    • Bechtold, B., & Kunze, U. (1999). KUES'95-The Modern Diagnostic System for Loose Parts Monitoring. Progress in Nuclear Energy, 34, 221-230. (Pubitemid 129665167)
    • (1999) Progress in Nuclear Energy , vol.34 , Issue.3 , pp. 221-230
    • Bechtold, B.1    Kunze, U.2
  • 93
    • 0001689117 scopus 로고    scopus 로고
    • Commercial nuclear reactor loose part monitoring setpoints
    • Persion, J. V. (1999). Commercial Nuclear Reactor Loose Part Monitoring Setpoints. Progress in Nuclear Energy, 34, 203-211.
    • (1999) Progress in Nuclear Energy , vol.34 , pp. 203-211
    • Persion, J.V.1
  • 95
    • 79751533884 scopus 로고    scopus 로고
    • Application of continuous wavelet transform to the impact location estimation of the loose part monitoring system (LPMS)
    • Park, J. H., & Lee, J. H. (2006). Application of Continuous Wavelet Transform to the Impact Location Estimation of the Loose Part Monitoring System (LPMS). International Journal of Nuclear Science and Technology, 2, 233-240.
    • (2006) International Journal of Nuclear Science and Technology , vol.2 , pp. 233-240
    • Park, J.H.1    Lee, J.H.2
  • 97
    • 33746930620 scopus 로고    scopus 로고
    • Time-scale BWR stability analysis using wavelet-based method
    • Nunez-carrera, A., & Espinosa-paredes, G. (2006). Time-Scale BWR Stability Analysis Using Wavelet-Based Method. Progress in Nuclear Energy, 48, 540-549.
    • (2006) Progress in Nuclear Energy , vol.48 , pp. 540-549
    • Nunez-Carrera, A.1    Espinosa-Paredes, G.2
  • 98
    • 23344432762 scopus 로고    scopus 로고
    • Evolutionary fuzzy clustering for the Classification of transients in nuclear components
    • DOI 10.1016/j.pnucene.2005.03.010, PII S0149197005000259, Computational Intelligence in Nuclear Applications: Lessons Learned and Recent Developments
    • Zio, E., & Baraldi, P. (2005). Evolutionary Fuzzy Clustering for the Classification of Transients in Nuclear Component. Progress in Nuclear Energy, 46, 282-296. (Pubitemid 41101270)
    • (2005) Progress in Nuclear Energy , vol.46 , Issue.3-4 , pp. 282-296
    • Zio, E.1    Baraldi, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.