메뉴 건너뛰기




Volumn 29, Issue 1-2, 2010, Pages 89-105

Efficient computation of the maximum a posteriori path and parameter estimation in integrate-and-fire and more general state-space models

Author keywords

Laplace approximation; Point processes; State space models; Tridiagonal Newton Raphson method

Indexed keywords

PARAMETER ESTIMATION; STATE SPACE METHODS;

EID: 77956892292     PISSN: 09295313     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10827-009-0150-x     Document Type: Article
Times cited : (25)

References (43)
  • 1
    • 38749154710 scopus 로고    scopus 로고
    • Estimation of parameters in nonlinear systems using balanced synchronization
    • H Abarbanel D Creveling J Jeanne 2008 Estimation of parameters in nonlinear systems using balanced synchronization Physical Review. D. 77 016,208
    • (2008) Physical Review. D. , vol.77 , pp. 016
    • Abarbanel, H.1    Creveling, D.2    Jeanne, J.3
  • 2
    • 77956893539 scopus 로고    scopus 로고
    • Efficient Markov chain Monte Carlo methods for decoding population spike trains
    • in press
    • Ahmadian, Y., Pillow, J., & Paninski, L. (2009). Efficient Markov chain Monte Carlo methods for decoding population spike trains. Neural Computation (in press).
    • (2009) Neural Computation
    • Ahmadian, Y.1    Pillow, J.2    Paninski, L.3
  • 4
    • 13244272097 scopus 로고    scopus 로고
    • Block matrices with L-block-banded inverse: Inversion algorithms
    • DOI 10.1109/TSP.2004.840709
    • A Asif J Moura 2005 Block matrices with l-block banded inverse: Inversion algorithms IEEE Transactions on Signal Processing 53 630 642 10.1109/TSP.2004.840709 (Pubitemid 40181757)
    • (2005) IEEE Transactions on Signal Processing , vol.53 , Issue.I2 , pp. 630-642
    • Asif, A.1    Moura, J.M.F.2
  • 5
    • 33748656095 scopus 로고    scopus 로고
    • Dependence of the spike-triggered average voltage on membrane response properties
    • 10.1016/j.neucom.2005.12.046
    • L Badel M Richardson W Gerstner 2005 Dependence of the spike-triggered average voltage on membrane response properties Neurocomputing 69 1062 1065 10.1016/j.neucom.2005.12.046
    • (2005) Neurocomputing , vol.69 , pp. 1062-1065
    • Badel, L.1    Richardson, M.2    Gerstner, W.3
  • 6
    • 0001266656 scopus 로고
    • The iterated Kalman smoother as Gauss-Newton method
    • 10.1137/0804035
    • BM Bell 1994 The iterated Kalman smoother as Gauss-Newton method SIAM Journal on Optimization 4 626 636 10.1137/0804035
    • (1994) SIAM Journal on Optimization , vol.4 , pp. 626-636
    • Bell, B.M.1
  • 8
    • 1542615171 scopus 로고    scopus 로고
    • Recursive Bayesian Decoding of Motor Cortical Signals by Particle Filtering
    • DOI 10.1152/jn.00438.2003
    • AE Brockwell AL Rojas RE Kass 2004 Recursive Bayesian decoding of motor cortical signals by particle filtering Journal of Neurophysiology 91 1899 1907 1:STN:280:DC%2BD2c7itVWksA%3D%3D 10.1152/jn.00438.2003 15010499 (Pubitemid 38339355)
    • (2004) Journal of Neurophysiology , vol.91 , Issue.4 , pp. 1899-1907
    • Brockwell, A.E.1    Rojas, A.L.2    Kass, R.E.3
  • 9
    • 0032530363 scopus 로고    scopus 로고
    • A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells
    • 1:CAS:528:DyaK1cXmt1Sjtbk%3D 9736661
    • EN Brown LM Frank D Tang MC Quirk MA Wilson 1998 A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells Journal of Neuroscience 18 7411 7425 1:CAS:528:DyaK1cXmt1Sjtbk%3D 9736661
    • (1998) Journal of Neuroscience , vol.18 , pp. 7411-7425
    • Brown, E.N.1    Frank, L.M.2    Tang, D.3    Quirk, M.C.4    Wilson, M.A.5
  • 10
    • 20444434024 scopus 로고    scopus 로고
    • Estimation for state-space models based on a likelihood approximation
    • RA Davis G Rodriguez-Yam 2005 Estimation for state-space models based on a likelihood approximation Statistica Sinica 15 381 406
    • (2005) Statistica Sinica , vol.15 , pp. 381-406
    • Davis, R.A.1    Rodriguez-Yam, G.2
  • 12
    • 1842733199 scopus 로고    scopus 로고
    • Dynamic Analysis of Neural Encoding by Point Process Adaptive Filtering
    • DOI 10.1162/089976604773135069
    • UT Eden LM Frank R Barbieri V Solo EN Brown 2004 Dynamic analyses of neural encoding by point process adaptive filtering Neural Computation 16 971 998 10.1162/089976604773135069 15070506 (Pubitemid 38483047)
    • (2004) Neural Computation , vol.16 , Issue.5 , pp. 971-998
    • Eden, U.T.1    Frank, L.M.2    Barbieri, R.3    Solo, V.4    Brown, E.N.5
  • 13
    • 0002498495 scopus 로고
    • On Kalman filtering, posterior mode estimation and fisher scoring in dynamic exponential family regression
    • 10.1007/BF02613597
    • L Fahrmeir H Kaufmann 1991 On Kalman filtering, posterior mode estimation and fisher scoring in dynamic exponential family regression Metrika 38 37 60 10.1007/BF02613597
    • (1991) Metrika , vol.38 , pp. 37-60
    • Fahrmeir, L.1    Kaufmann, H.2
  • 15
    • 27344435412 scopus 로고    scopus 로고
    • Expectation propagation for approximate inference in dynamic Bayesian networks
    • A. Darwiche N. Friedman (eds). Morgan Kaufmann San Francisco
    • Heskes, T., & Zoeter, O. (2002). Expectation propagation for approximate inference in dynamic Bayesian networks. In A. Darwiche & N. Friedman (Eds.), Uncertainty in artificial intelligence: Proceedings of the eighteenth conference (UAI-2002) (pp. 216-233). San Francisco: Morgan Kaufmann.
    • (2002) Uncertainty in Artificial Intelligence: Proceedings of the Eighteenth Conference (UAI-2002) , pp. 216-233
    • Heskes, T.1    Zoeter, O.2
  • 16
    • 33746752672 scopus 로고    scopus 로고
    • Efficient estimation of detailed single-neuron models
    • DOI 10.1152/jn.00079.2006
    • Q Huys M Ahrens L Paninski 2006 Efficient estimation of detailed single-neuron models Journal of Neurophysiology 96 872 890 10.1152/jn.00079.2006 16624998 (Pubitemid 44159755)
    • (2006) Journal of Neurophysiology , vol.96 , Issue.2 , pp. 872-890
    • Huys, Q.J.M.1    Ahrens, M.B.2    Paninski, L.3
  • 18
    • 37549006823 scopus 로고    scopus 로고
    • Monte Carlo estimation for nonlinear non-Gaussian state-space models
    • 10.1093/biomet/asm074
    • B Jungbacker SJ Koopman 2007 Monte Carlo estimation for nonlinear non-Gaussian state-space models Biometrika 94 827 839 10.1093/biomet/asm074
    • (2007) Biometrika , vol.94 , pp. 827-839
    • Jungbacker, B.1    Koopman, S.J.2
  • 19
    • 34247603466 scopus 로고    scopus 로고
    • Phase transitions in the estimation of event rate: A path integral analysis
    • 10.1088/1751-8113/40/20/F01
    • S Koyama T Shimokawa S Shinomoto 2007 Phase transitions in the estimation of event rate: A path integral analysis Journal of Physics. A, Mathematical and General 40 383 390 10.1088/1751-8113/40/20/F01
    • (2007) Journal of Physics. A, Mathematical and General , vol.40 , pp. 383-390
    • Koyama, S.1    Shimokawa, T.2    Shinomoto, S.3
  • 20
    • 22544467020 scopus 로고    scopus 로고
    • Empirical Bayes interpretations of random point events
    • DOI 10.1088/0305-4470/38/29/L04, PII S030544700597981X
    • S Koyama S Shinomoto 2005 Empirical Bayes interpretations for random point events Journal of Physics. A, Mathematical and General 38 531 537 10.1088/0305-4470/38/29/L04 (Pubitemid 41016426)
    • (2005) Journal of Physics A: Mathematical and General , vol.38 , Issue.29
    • Koyama, S.1    Shinomoto, S.2
  • 21
    • 0345978970 scopus 로고    scopus 로고
    • Expectation propagation for approximate Bayesian inference
    • Minka, T. (2001). Expectation propagation for approximate Bayesian inference. Uncertainty in Artificial intelligence, 17.
    • (2001) Uncertainty in Artificial Intelligence , vol.17
    • Minka, T.1
  • 23
    • 34247192555 scopus 로고    scopus 로고
    • State-space models: From the em algorithm to a gradient approach
    • 10.1162/neco.2007.19.4.1097
    • RK Olsson KB Petersen T Lehn-Schioler 2007 State-space models: From the EM algorithm to a gradient approach Neural Computation 19 1097 1111 10.1162/neco.2007.19.4.1097
    • (2007) Neural Computation , vol.19 , pp. 1097-1111
    • Olsson, R.K.1    Petersen, K.B.2    Lehn-Schioler, T.3
  • 24
    • 9744274025 scopus 로고    scopus 로고
    • Maximum likelihood estimation of cascade point-process neural encoding models
    • DOI 10.1088/0954-898X/15/4/002, PII S0954898X04757802
    • L Paninski 2004 Maximum likelihood estimation of cascade point-process neural encoding models Network: Computation in Neural Systems 15 243 262 10.1088/0954-898X/15/4/002 (Pubitemid 39586479)
    • (2004) Network: Computation in Neural Systems , vol.15 , Issue.4 , pp. 243-262
    • Paninski, L.1
  • 25
    • 84899012151 scopus 로고    scopus 로고
    • Log-concavity results on Gaussian process methods for supervised and unsupervised learning
    • L Paninski 2005 Log-concavity results on Gaussian process methods for supervised and unsupervised learning Advances in Neural Information Processing Systems 17 1025 1032
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 1025-1032
    • Paninski, L.1
  • 26
    • 33745863997 scopus 로고    scopus 로고
    • The most likely voltage path and large deviations approximations for integrate-and-fire neurons
    • DOI 10.1007/s10827-006-7200-4
    • L Paninski 2006 The most likely voltage path and large deviations approximations for integrate-and-fire neurons Journal of Computational Neuroscience 21 71 87 10.1007/s10827-006-7200-4 16633936 (Pubitemid 44028470)
    • (2006) Journal of Computational Neuroscience , vol.21 , Issue.1 , pp. 71-87
    • Paninski, L.1
  • 27
    • 33750583238 scopus 로고    scopus 로고
    • The spike-triggered average of the integrate-and-fire cell driven by gaussian white noise
    • DOI 10.1162/neco.2006.18.11.2592
    • L Paninski 2006 The spike-triggered average of the integrate-and-fire cell driven by Gaussian white noise Neural Computation 18 2592 2616 10.1162/neco.2006.18.11.2592 16999572 (Pubitemid 44684600)
    • (2006) Neural Computation , vol.18 , Issue.11 , pp. 2592-2616
    • Paninski, L.1
  • 28
    • 9744239998 scopus 로고    scopus 로고
    • Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model
    • DOI 10.1162/0899766042321797
    • L Paninski J Pillow E Simoncelli 2004 Maximum likelihood estimation of a stochastic integrate-and-fire neural model Neural Computation 16 2533 2561 10.1162/0899766042321797 15516273 (Pubitemid 39604009)
    • (2004) Neural Computation , vol.16 , Issue.12 , pp. 2533-2561
    • Paninski, L.1    Pillow, J.W.2    Simoncelli, E.P.3
  • 30
    • 77956940930 scopus 로고    scopus 로고
    • Model-based decoding, information estimation, and change-point detection in multi-neuron spike trains
    • in press
    • Pillow, J., Ahmadian, Y., & Paninski, L. (2009). Model-based decoding, information estimation, and change-point detection in multi-neuron spike trains. Neural Computation (in press).
    • (2009) Neural Computation
    • Pillow, J.1    Ahmadian, Y.2    Paninski, L.3
  • 32
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • 10.1109/5.18626
    • L Rabiner 1989 A tutorial on hidden Markov models and selected applications in speech recognition Proceedings of the IEEE 77 257 286 10.1109/5.18626
    • (1989) Proceedings of the IEEE , vol.77 , pp. 257-286
    • Rabiner, L.1
  • 34
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear Gaussian models
    • 1:STN:280:DyaK1M7js1Slug%3D%3D 10.1162/089976699300016674 9950734
    • S Roweis Z Ghahramani 1999 A unifying review of linear Gaussian models Neural Computation 11 305 345 1:STN:280:DyaK1M7js1Slug%3D%3D 10.1162/089976699300016674 9950734
    • (1999) Neural Computation , vol.11 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2
  • 35
    • 0000413899 scopus 로고
    • An accelerated lambda iteration method for multilevel radiative transfer, appendix b: Fast solution for the diagonal elements of the inverse of a tridiagonal matrix
    • 1:CAS:528:DyaK3MXlsVGlu70%3D
    • G Rybicki D Hummer 1991 An accelerated lambda iteration method for multilevel radiative transfer, appendix b: Fast solution for the diagonal elements of the inverse of a tridiagonal matrix Astronomy and Astrophysics 245 171 1:CAS:528:DyaK3MXlsVGlu70%3D
    • (1991) Astronomy and Astrophysics , vol.245 , pp. 171
    • Rybicki, G.1    Hummer, D.2
  • 36
    • 0000247693 scopus 로고
    • Class of fast methods for processing irregularly sampled or otherwise inhomogeneous one-dimensional data
    • 10.1103/PhysRevLett.74.1060 1:CAS:528:DyaK2MXjs1Kis70%3D 10.1103/PhysRevLett.74.1060 10058924
    • GB Rybicki WH Press 1995 Class of fast methods for processing irregularly sampled or otherwise inhomogeneous one-dimensional data Physical Review Letters 74 7 1060 1063 10.1103/PhysRevLett.74.1060 1:CAS:528:DyaK2MXjs1Kis70%3D 10.1103/PhysRevLett.74.1060 10058924
    • (1995) Physical Review Letters , vol.74 , Issue.7 , pp. 1060-1063
    • Rybicki, G.B.1    Press, W.H.2
  • 38
    • 0038605051 scopus 로고    scopus 로고
    • Estimating a state-space model from point process observations
    • DOI 10.1162/089976603765202622
    • AC Smith EN Brown 2003 Estimating a state-space model from point process observations Neural Computation 15 965 991 10.1162/089976603765202622 12803953 (Pubitemid 37049798)
    • (2003) Neural Computation , vol.15 , Issue.5 , pp. 965-991
    • Smith, A.C.1    Brown, E.N.2
  • 40
    • 0001560641 scopus 로고
    • Fully exponential Laplace approximation to posterior expectations and variances
    • 10.2307/2289652
    • L Tierney RE Kass JB Kadane 1989 Fully exponential Laplace approximation to posterior expectations and variances Journal of the American Statistical Association 84 710 716 10.2307/2289652
    • (1989) Journal of the American Statistical Association , vol.84 , pp. 710-716
    • Tierney, L.1    Kass, R.E.2    Kadane, J.B.3
  • 42
    • 27844550751 scopus 로고    scopus 로고
    • Novel approximations for inference in nonlinear dynamical systems using expectation propagation
    • DOI 10.1016/j.neucom.2005.02.020, PII S0925231205001670
    • A Ypma T Heskes 2005 Novel approximations for inference in nonlinear dynamical systems using expectation propagation Neurocomputing 69 85 99 10.1016/j.neucom.2005.02.020 10.1016/j.neucom.2005.02.020 (Pubitemid 41644425)
    • (2005) Neurocomputing , vol.69 , Issue.1-3 , pp. 85-99
    • Ypma, A.1    Heskes, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.