메뉴 건너뛰기




Volumn 47, Issue 2, 2010, Pages 349-376

Management of water resource systems in the presence of uncertainties by nonlinear approximation techniques and deterministic sampling

Author keywords

Curse of dimensionality; Deterministic sampling; Dynamic programming; Stochastic approximation; Stochastic optimal control; Water resources management

Indexed keywords

CURSE OF DIMENSIONALITY; DETERMINISTIC SAMPLING; STOCHASTIC APPROXIMATIONS; STOCHASTIC OPTIMAL CONTROL; WATER RESOURCES MANAGEMENT;

EID: 77956759955     PISSN: 09266003     EISSN: 15732894     Source Type: Journal    
DOI: 10.1007/s10589-008-9221-6     Document Type: Article
Times cited : (15)

References (55)
  • 1
    • 34250423189 scopus 로고
    • On decision rules in stochastic programming
    • 0326.90049 10.1007/BF01585511 351451
    • S.J. Garstka R.J.B. Wets 1974 On decision rules in stochastic programming Math. Program. 7 117 173 0326.90049 10.1007/BF01585511 351451
    • (1974) Math. Program. , vol.7 , pp. 117-173
    • Garstka, S.J.1    Wets, R.J.B.2
  • 2
    • 0000514655 scopus 로고
    • Scenarios and policy aggregation in optimization under uncertainty
    • 0729.90067 10.1287/moor.16.1.119 1106793
    • R.T. Rockafellar R.J.-B. Wets 1991 Scenarios and policy aggregation in optimization under uncertainty Math. Oper. Res. 16 119 147 0729.90067 10.1287/moor.16.1.119 1106793
    • (1991) Math. Oper. Res. , vol.16 , pp. 119-147
    • Rockafellar, R.T.1    Wets, R.J.-B.2
  • 3
    • 0003787146 scopus 로고
    • Princeton University Press Princeton 0077.13605
    • Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
    • (1957) Dynamic Programming
    • Bellman, R.1
  • 7
    • 0019716203 scopus 로고
    • A decomposition method for the long-term scheduling of reservoirs in series
    • 10.1029/WR017i006p01565
    • A. Turgeon 1981 A decomposition method for the long-term scheduling of reservoirs in series Water Resour. Res. 17 1565 1570 10.1029/WR017i006p01565
    • (1981) Water Resour. Res. , vol.17 , pp. 1565-1570
    • Turgeon, A.1
  • 8
    • 0030618794 scopus 로고    scopus 로고
    • An aggregate stochastic dynamic programming model of multireservoir systems
    • 10.1029/96WR02859
    • T.W. Archibald K.I.M. McKinnon L.C. Thomas 1997 An aggregate stochastic dynamic programming model of multireservoir systems Water Resour. Res. 33 333 340 10.1029/96WR02859
    • (1997) Water Resour. Res. , vol.33 , pp. 333-340
    • Archibald, T.W.1    McKinnon, K.I.M.2    Thomas, L.C.3
  • 9
    • 84968468700 scopus 로고
    • Polynomial approximation-A new computational technique in dynamic programming
    • 0123.37303 160313
    • R. Bellman R. Kalaba B. Kotkin 1963 Polynomial approximation-A new computational technique in dynamic programming Math. Comput. 17 155 161 0123.37303 160313
    • (1963) Math. Comput. , vol.17 , pp. 155-161
    • Bellman, R.1    Kalaba, R.2    Kotkin, B.3
  • 10
    • 0024158874 scopus 로고
    • Gradient dynamic programming for stochastic optimal control of multidimensional water resources systems
    • 10.1029/WR024i008p01345
    • E. Foufoula-Georgiou P.K. Kitanidis 1988 Gradient dynamic programming for stochastic optimal control of multidimensional water resources systems Water Resour. Res. 24 1345 1359 10.1029/WR024i008p01345
    • (1988) Water Resour. Res. , vol.24 , pp. 1345-1359
    • Foufoula-Georgiou, E.1    Kitanidis, P.K.2
  • 11
    • 0027601994 scopus 로고
    • Numerical solution of continuous-state dynamic programs using linear and spline interpolation
    • 0777.90074 10.1287/opre.41.3.484
    • S.A. Johnson J.R. Stedinger C. Shoemaker Y. Li J.A. Tejada-Guibert 1993 Numerical solution of continuous-state dynamic programs using linear and spline interpolation Oper. Res. 41 484 500 0777.90074 10.1287/opre.41.3.484
    • (1993) Oper. Res. , vol.41 , pp. 484-500
    • Johnson, S.A.1    Stedinger, J.R.2    Shoemaker, C.3    Li, Y.4    Tejada-Guibert, J.A.5
  • 12
    • 0035328580 scopus 로고    scopus 로고
    • Improved dynamic programming methods for optimal control of lumped-parameter stochastic systems
    • 10.1287/opre.49.3.398.11219 1837358
    • C.R. Philbrick Jr. P.K. Kitanidis 1999 Improved dynamic programming methods for optimal control of lumped-parameter stochastic systems Oper. Res. 49 398 412 10.1287/opre.49.3.398.11219 1837358
    • (1999) Oper. Res. , vol.49 , pp. 398-412
    • Philbrick, Jr.C.R.1    Kitanidis, P.K.2
  • 13
    • 0001820934 scopus 로고    scopus 로고
    • Applying experimental design and regression splines to high-dimensional continuous-state stochastic dynamic programming
    • 0979.90094 10.1287/opre.47.1.38 1689994
    • V.C.P. Chen D. Ruppert C.A. Shoemaker 1999 Applying experimental design and regression splines to high-dimensional continuous-state stochastic dynamic programming Oper. Res. 47 38 53 0979.90094 10.1287/opre.47.1.38 1689994
    • (1999) Oper. Res. , vol.47 , pp. 38-53
    • Chen, V.C.P.1    Ruppert, D.2    Shoemaker, C.A.3
  • 14
    • 0035578679 scopus 로고    scopus 로고
    • Valuing American options by simulation: A simple least squares approach
    • 10.1093/rfs/14.1.113
    • F.A. Longstaff E.S. Schwartz 2001 Valuing American options by simulation: A simple least squares approach Rev. Financ. Stud. 14 113 147 10.1093/rfs/14.1.113
    • (2001) Rev. Financ. Stud. , vol.14 , pp. 113-147
    • Longstaff, F.A.1    Schwartz, E.S.2
  • 15
    • 0030516708 scopus 로고    scopus 로고
    • Valuation of the early-exercise price for options using simulations and nonparametric regression
    • DOI 10.1016/S0167-6687(96)00004-2, PII S0167668796000042
    • J.F. Carriere 1996 Valuation of the early-exercise price for derivative securities using simulations and splines Insur. Math. Econ. 19 19 30 0894.62109 10.1016/S0167-6687(96)00004-2 1439613 (Pubitemid 126160556)
    • (1996) Insurance: Mathematics and Economics , vol.19 , Issue.1 , pp. 19-30
    • Carriere, J.F.1
  • 16
    • 4944229957 scopus 로고    scopus 로고
    • A stochastic mesh method for pricing high dimensional American options
    • Brodie, P., Glasserman, M.: A stochastic mesh method for pricing high dimensional American options, J. Comput. Finance 7, 2004
    • (2004) J. Comput. Finance , vol.7
    • Brodie, P.1    Glasserman, M.2
  • 17
    • 0003320059 scopus 로고
    • Learning techniques and neural networks for the solution of n-stage nonlinear nonquadratic optimal control problems
    • A. Isidori T.J. Tarn (eds). Birkhäuser Boston
    • Zoppoli, R., Parisini, T.: Learning techniques and neural networks for the solution of n-stage nonlinear nonquadratic optimal control problems. In: Isidori, A., Tarn, T.J. (eds.) Systems, Models and Feedback: Theory and Applications, pp. 193-210. Birkhäuser, Boston (1992)
    • (1992) Systems, Models and Feedback: Theory and Applications , pp. 193-210
    • Zoppoli, R.1    Parisini, T.2
  • 19
    • 0036115636 scopus 로고    scopus 로고
    • Approximating networks and extended Ritz method for the solution of functional optimization problems
    • DOI 10.1023/A:1013662124879
    • R. Zoppoli T. Parisini M. Sanguineti 2002 Approximating networks and extended Ritz method for the solution of functional optimization problems J. Optim. Theory Appl. 112 403 439 0992.65072 10.1023/A:1013662124879 1883078 (Pubitemid 39583388)
    • (2002) Journal of Optimization Theory and Applications , vol.112 , Issue.2 , pp. 403-440
    • Zoppoli, R.1    Sanguineti, M.2    Parisini, T.3
  • 20
    • 0036165028 scopus 로고    scopus 로고
    • Comparison of worst case errors in linear and neural network approximation
    • DOI 10.1109/18.971754, PII S0018944802000044
    • V. Kůrková M. Sanguineti 2002 Comparison of worst-case errors in linear and neural network approximation IEEE Trans. Inf. Theory 48 264 275 1059.62589 10.1109/18.971754 (Pubitemid 34125325)
    • (2002) IEEE Transactions on Information Theory , vol.48 , Issue.1 , pp. 264-275
    • Kurkova, V.1    Sanguineti, M.2
  • 21
    • 18744392546 scopus 로고    scopus 로고
    • Error estimates for approximate optimization by the extended Ritz method
    • V. Kůrková M. Sanguineti 2005 Error estimates for approximate optimization by the extended Ritz method SIAM J. Optim. 15 261 287
    • (2005) SIAM J. Optim. , vol.15 , pp. 261-287
    • Kůrková, V.1    Sanguineti, M.2
  • 22
    • 2542562008 scopus 로고    scopus 로고
    • Deterministic design for neural-network learning: An approach based on discrepancy
    • 10.1109/TNN.2004.824413
    • C. Cervellera M. Muselli 2004 Deterministic design for neural-network learning: An approach based on discrepancy IEEE Trans. Neural Netw. 15 533 544 10.1109/TNN.2004.824413
    • (2004) IEEE Trans. Neural Netw. , vol.15 , pp. 533-544
    • Cervellera, C.1    Muselli, M.2
  • 23
    • 0020335699 scopus 로고
    • Dynamic programming applications in water resources
    • 10.1029/WR018i004p00673
    • S. Yakowitz 1982 Dynamic programming applications in water resources Water Resour. Res. 18 673 696 10.1029/WR018i004p00673
    • (1982) Water Resour. Res. , vol.18 , pp. 673-696
    • Yakowitz, S.1
  • 24
    • 31144463326 scopus 로고    scopus 로고
    • Optimization of a large-scale water reservoir network by stochastic dynamic programming with efficient state space discretization
    • DOI 10.1016/j.ejor.2005.01.022, PII S0377221705001311, Feature Cluster: Heuristic and Stochastic Methods in Optimization
    • C. Cervellera V.C. Chen A. Wen 2006 Optimization of a large-scale water reservoir network by stochastic dynamic programming with efficient state space discretization Eur. J. Oper. Res. 171 3 1139 1151 1116.90123 10.1016/j.ejor.2005.01.022 (Pubitemid 43132968)
    • (2006) European Journal of Operational Research , vol.171 , Issue.3 , pp. 1139-1151
    • Cervellera, C.1    Chen, V.C.P.2    Wen, A.3
  • 25
    • 0018501971 scopus 로고
    • Optimal management of a multireservoir water supply system
    • 10.1029/WR015i004p00737
    • S. Gal 1979 Optimal management of a multireservoir water supply system Water Resour. Res. 15 737 749 10.1029/WR015i004p00737
    • (1979) Water Resour. Res. , vol.15 , pp. 737-749
    • Gal, S.1
  • 26
    • 0022111962 scopus 로고
    • Approaches to multivariate modeling of water resources time series
    • J.D. Salas G.Q. Tabios III P. Bartolini 1985 Approaches to multivariate modeling of water resources time series Water Resour. Bull. 21 683 708
    • (1985) Water Resour. Bull. , vol.21 , pp. 683-708
    • Salas, J.D.1    Tabios Iii, G.Q.2    Bartolini, P.3
  • 27
    • 0001546764 scopus 로고    scopus 로고
    • Convergent on-line algorithms for supervised learning in neural networks
    • 10.1109/72.883426
    • L. Grippo 2000 Convergent on-line algorithms for supervised learning in neural networks IEEE Trans. Neural Netw. 11 1284 1299 10.1109/72.883426
    • (2000) IEEE Trans. Neural Netw. , vol.11 , pp. 1284-1299
    • Grippo, L.1
  • 28
    • 0036506049 scopus 로고    scopus 로고
    • Optimization-based learning with bounded error for feedforward neural networks
    • DOI 10.1109/72.991413, PII S1045922702018003
    • A. Alessandri M. Sanguineti 2002 Optimization-based learning with bounded error for feedforward neural networks IEEE Trans. Neural Netw. 13 261 273 10.1109/72.991413 (Pubitemid 34475029)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 261-273
    • Alessandri, A.1    Sanguineti, M.2    Maggiore, M.3
  • 29
    • 35348837278 scopus 로고    scopus 로고
    • A recursive algorithm for nonlinear least-squares problems
    • DOI 10.1007/s10589-007-9047-7, Special Issue on Mathematical Methods for Learning and Data Mining, Guest Editors: Carlo Vercellis and Giovanni Felici
    • A. Alessandri M. Cuneo S. Pagnan M. Sanguineti 2007 A recursive algorithm for nonlinear least-squares problems Comput. Optim. Appl. 38 195 216 1144.62080 10.1007/s10589-007-9047-7 2349932 (Pubitemid 47574239)
    • (2007) Computational Optimization and Applications , vol.38 , Issue.2 , pp. 195-216
    • Alessandri, A.1    Cuneo, M.2    Pagnan, S.3    Sanguineti, M.4
  • 30
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • 0818.68126 10.1109/18.256500 1237720
    • A.R. Barron 1993 Universal approximation bounds for superpositions of a sigmoidal function IEEE Trans. Inf. Theory 39 930 945 0818.68126 10.1109/18.256500 1237720
    • (1993) IEEE Trans. Inf. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 31
    • 0001325515 scopus 로고
    • Approximation and estimation bounds for artificial neural networks
    • 0818.68127
    • A.R. Barron 1994 Approximation and estimation bounds for artificial neural networks Mach. Learn. 14 115 133 0818.68127
    • (1994) Mach. Learn. , vol.14 , pp. 115-133
    • Barron, A.R.1
  • 33
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • 10.1016/S0893-6080(05)80131-5
    • M. Leshno V. Ya A. Pinkus S. Schocken 1993 Multilayer feedforward networks with a nonpolynomial activation function can approximate any function Neural Netw. 6 861 867 10.1016/S0893-6080(05)80131-5
    • (1993) Neural Netw. , vol.6 , pp. 861-867
    • Leshno, M.1    Ya, V.2    Pinkus, A.3    Schocken, S.4
  • 34
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function networks
    • 10.1162/neco.1991.3.2.246
    • J. Park I.W. Sandberg 1991 Universal approximation using radial-basis-function networks Neural Comput. 3 246 257 10.1162/neco.1991.3.2. 246
    • (1991) Neural Comput. , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 36
    • 44349186707 scopus 로고    scopus 로고
    • Step decision rules for multistage stochastic programming: A heuristic approach
    • 10.1016/j.automatica.2008.02.001 2531844
    • J. Thenie J.P. Vial 2008 Step decision rules for multistage stochastic programming: A heuristic approach Automatica 44 1569 1584 10.1016/j.automatica. 2008.02.001 2531844
    • (2008) Automatica , vol.44 , pp. 1569-1584
    • Thenie, J.1    Vial, J.P.2
  • 38
    • 58149492837 scopus 로고    scopus 로고
    • Approximation schemes for functional optimization problems
    • doi:10.1007/s10957-008-9471-6
    • Giulini, S., Sanguineti, M.: Approximation schemes for functional optimization problems J. Optim. Theory Appl. doi: 10.1007/s10957-008-9471-6
    • J. Optim. Theory Appl.
    • Giulini, S.1    Sanguineti, M.2
  • 39
    • 0028425062 scopus 로고
    • Neural networks for feedback feedforward nonlinear control systems
    • 10.1109/72.286914
    • T. Parisini R. Zoppoli 1994 Neural networks for feedback feedforward nonlinear control systems IEEE Trans. Neural Netw. 5 436 449 10.1109/72.286914
    • (1994) IEEE Trans. Neural Netw. , vol.5 , pp. 436-449
    • Parisini, T.1    Zoppoli, R.2
  • 40
    • 0030169366 scopus 로고    scopus 로고
    • Neural approximations for multistage optimal control of nonlinear stochastic systems
    • 0858.93070 10.1109/9.506245 1391789
    • R. Zoppoli T. Parisini 1996 Neural approximations for multistage optimal control of nonlinear stochastic systems IEEE Trans. Autom. Control 41 889 895 0858.93070 10.1109/9.506245 1391789
    • (1996) IEEE Trans. Autom. Control , vol.41 , pp. 889-895
    • Zoppoli, R.1    Parisini, T.2
  • 41
    • 0035330108 scopus 로고    scopus 로고
    • Distributed-information neural control: The case of dynamic routing in traffic networks
    • DOI 10.1109/72.925553, PII S1045922701036918
    • M. Baglietto T. Parisini R. Zoppoli 2001 Distributed-information neural control: the case of dynamic routing in traffic networks IEEE Trans. Neural Netw. 12 485 502 10.1109/72.925553 (Pubitemid 32583550)
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.3 , pp. 485-502
    • Baglietto, M.1    Parisini, T.2    Zoppoli, R.3
  • 42
    • 18744415637 scopus 로고    scopus 로고
    • Facing the curse of dimensionality by the extended Ritz method in stochastic functional optimization: Dynamic routing in traffic networks
    • G. Di Pillo A. Murli (eds). Kluwer Academic Dordrecht
    • Baglietto, M., Sanguineti, M., Zoppoli, R.: Facing the curse of dimensionality by the extended Ritz method in stochastic functional optimization: dynamic routing in traffic networks. In: Di Pillo, G., Murli, A. (eds.) High Performance Algorithms and Software for Nonlinear Optimization, pp. 23-56. Kluwer Academic, Dordrecht (2003)
    • (2003) High Performance Algorithms and Software for Nonlinear Optimization , pp. 23-56
    • Baglietto, M.1    Sanguineti, M.2    Zoppoli, R.3
  • 43
    • 12444304456 scopus 로고    scopus 로고
    • Optimization of approximating networks for optimal fault diagnosis
    • DOI 10.1080/10556780512331318245
    • A. Alessandri M. Sanguineti 2005 Optimization of approximating networks for optimal fault diagnosis Optim. Methods Softw. 20 241 266 1072.90036 10.1080/10556780512331318245 2141832 (Pubitemid 40146544)
    • (2005) Optimization Methods and Software , vol.20 , Issue.2-3 , pp. 235-260
    • Alessandri, A.1    Sanguineti, M.2
  • 44
    • 0034223939 scopus 로고    scopus 로고
    • Persistent identification of systems with unmodeled dynamics and exogenous disturbances
    • 0991.93118 10.1109/9.867017 1779979
    • L.Y. Wang G.G. Yin 2000 Persistent identification of systems with unmodeled dynamics and exogenous disturbances IEEE Trans. Autom. Control 45 1246 1256 0991.93118 10.1109/9.867017 1779979
    • (2000) IEEE Trans. Autom. Control , vol.45 , pp. 1246-1256
    • Wang, L.Y.1    Yin, G.G.2
  • 45
    • 0000482137 scopus 로고    scopus 로고
    • On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions
    • 10.1162/neco.1996.8.4.819
    • P. Niyogi F. Girosi 1996 On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions Neural Comput. 8 819 842 10.1162/neco.1996.8.4.819
    • (1996) Neural Comput. , vol.8 , pp. 819-842
    • Niyogi, P.1    Girosi, F.2
  • 47
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • 10.1162/neco.1995.7.2.219
    • F. Girosi M. Jones T. Poggio 1995 Regularization theory and neural networks architectures Neural Comput. 7 219 269 10.1162/neco.1995.7.2.219
    • (1995) Neural Comput. , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 50
    • 36148965498 scopus 로고    scopus 로고
    • Efficient sampling in approximate dynamic programming algorithms
    • DOI 10.1007/s10589-007-9054-8
    • C. Cervellera M. Muselli 2007 Efficient sampling in approximate dynamic programming algorithms Comput. Optim. Appl. 38 417 443 1171.90538 10.1007/s10589-007-9054-8 2354203 (Pubitemid 350115180)
    • (2007) Computational Optimization and Applications , vol.38 , Issue.3 , pp. 417-443
    • Cervellera, C.1    Muselli, M.2
  • 52
    • 0001352321 scopus 로고
    • The distribution of points in a cube and the approximate evaluation of integrals
    • 219238
    • I.M. Sobol' 1967 The distribution of points in a cube and the approximate evaluation of integrals Zh. Vychisl. Mat. Mat. Fiz. 7 784 802 219238
    • (1967) Zh. Vychisl. Mat. Mat. Fiz. , vol.7 , pp. 784-802
    • Sobol, I.M.1
  • 53
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • 10.1109/72.329697
    • M.T. Hagan M. Menhaj 1994 Training feedforward networks with the Marquardt algorithm IEEE Trans. Neural Netw. 5 989 993 10.1109/72.329697
    • (1994) IEEE Trans. Neural Netw. , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 54
    • 18144390163 scopus 로고    scopus 로고
    • Learning with generalization capability by kernel methods of bounded complexity
    • DOI 10.1016/j.jco.2004.11.002, PII S0885064X04001049
    • V. Kůrková M. Sanguineti 2005 Learning with generalization capability by kernel methods of bounded complexity J. Complex. 21 350 367 1095.68044 10.1016/j.jco.2004.11.002 (Pubitemid 40608775)
    • (2005) Journal of Complexity , vol.21 , Issue.3 , pp. 350-367
    • Kurkova, V.1    Sanguineti, M.2
  • 55
    • 58849109485 scopus 로고    scopus 로고
    • Accuracy of suboptimal solutions to kernel principal component analysis
    • doi:10.1007/s10589-007-9108-y
    • Gnecco, G., Sanguineti, M.: Accuracy of suboptimal solutions to kernel principal component analysis, Comput. Optim. Appl. doi: 10.1007/s10589-007-9108- y
    • Comput. Optim. Appl.
    • Gnecco, G.1    Sanguineti, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.