메뉴 건너뛰기




Volumn 15, Issue 3, 2004, Pages 533-544

Deterministic design for neural network learning: An approach based on discrepancy

Author keywords

Deterministic learning; Discrepancy; Empirical risk minimization (ERM); Learning rate; Variation

Indexed keywords

COMPUTATIONAL COMPLEXITY; COMPUTER SIMULATION; LEARNING ALGORITHMS; LEARNING SYSTEMS; OPTIMIZATION; PROBABILITY DENSITY FUNCTION;

EID: 2542562008     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2004.824413     Document Type: Article
Times cited : (46)

References (38)
  • 1
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko, "Approximation by superpositions of a sigmoidal function," Mathematics Control, Signals, Systems, vol. 2, pp. 303-314, 1989.
    • (1989) Mathematics Control, Signals, Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 2
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Netw., vol. 2, pp. 359-366, 1989.
    • (1989) Neural Netw. , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 3
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • May
    • A. Barron, "Universal approximation bounds for superpositions of a sigmoidal function," IEEE Trans. Inform. Theory, vol. 39, pp. 930-945, May 1993.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 930-945
    • Barron, A.1
  • 4
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • F. Girosi, M. Jones, and T. Poggio, "Regularization theory and neural networks architectures," Neural Comput., vol. 7, pp. 219-269, 1995.
    • (1995) Neural Comput. , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 5
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • V. N. Vapnik and A. Y. Chervonenkis, "On the uniform convergence of relative frequencies of events to their probabilities," Theory of Probability and Its Applications, vol. 16, pp. 264-280, 1971.
    • (1971) Theory of Probability and Its Applications , vol.16 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 6
    • 0021518106 scopus 로고
    • A theory of the learnable
    • L. G. Valiant, "A theory of the learnable," Commun. ACM, vol. 27, pp. 1134-1142, 1984.
    • (1984) Commun. ACM , vol.27 , pp. 1134-1142
    • Valiant, L.G.1
  • 7
    • 0024750852 scopus 로고
    • Learnability and the Vapnik-Chervonenkis dimension
    • A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, "Learnability and the Vapnik-Chervonenkis dimension," J. ACM, vol. 36, pp. 929-965, 1989.
    • (1989) J. ACM , vol.36 , pp. 929-965
    • Blumer, A.1    Ehrenfeucht, A.2    Haussler, D.3    Warmuth, M.K.4
  • 11
    • 0031176507 scopus 로고    scopus 로고
    • Scale-sensitive dimensions, uniform convergence, and learnability
    • N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler, "Scale-sensitive dimensions, uniform convergence, and learnability," J. ACM, vol. 44, pp. 615-631, 1997.
    • (1997) J. ACM , vol.44 , pp. 615-631
    • Alon, N.1    Ben-David, S.2    Cesa-Bianchi, N.3    Haussler, D.4
  • 13
  • 15
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • D. MacKay, "Information-based objective functions for active data selection," Neural Comput., vol. 4, pp. 305-318, 1992.
    • (1992) Neural Comput. , vol.4 , pp. 305-318
    • MacKay, D.1
  • 16
    • 0003328374 scopus 로고
    • Neural network exploration using optimal experiment
    • J. Cowan, G. Tesauro, and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann
    • D. A. Cohn, "Neural network exploration using optimal experiment," in Advances in Neural Information Processing Systems 6, J. Cowan, G. Tesauro, and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann, 1994, pp. 679-686.
    • (1994) Advances in Neural Information Processing Systems 6 , pp. 679-686
    • Cohn, D.A.1
  • 18
    • 85156219498 scopus 로고    scopus 로고
    • Active learning in multilayer perceptrons
    • D. Touretzky, M. Mozer, and M. Hasselmo, Eds. Cambridge, MA: MIT Press
    • K. Fukumizu, "Active learning in multilayer perceptrons," in Advances in Neural Information Processing Systems 8, D. Touretzky, M. Mozer, and M. Hasselmo, Eds. Cambridge, MA: MIT Press, 1996, pp. 295-301.
    • (1996) Advances in Neural Information Processing Systems 8 , pp. 295-301
    • Fukumizu, K.1
  • 19
    • 0033640737 scopus 로고    scopus 로고
    • Statistical active learning in multilayer perceptrons
    • Jan.
    • ____, "Statistical active learning in multilayer perceptrons," IEEE Trans. Neural Networks, vol. 11, pp. 17-26, Jan. 2000.
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 17-26
    • Fukumizu, K.1
  • 23
    • 0000915578 scopus 로고
    • Uniform convergence of the frequencies of occurrence of events to their probabilities
    • V. N. Vapnik and A. Y. Chervonenkis, "Uniform convergence of the frequencies of occurrence of events to their probabilities," Soviet Math. Doklady, vol. 9, pp. 915-918, 1968.
    • (1968) Soviet Math. Doklady , vol.9 , pp. 915-918
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 27
    • 0000489595 scopus 로고
    • Funktionen von beschränkter variation in der theorie der gleichverteilung
    • E. Hlawka, "Funktionen von beschränkter variation in der theorie der gleichverteilung," Ann. Mat. Pura Appl., vol. 54, pp. 325-333, 1961.
    • (1961) Ann. Mat. Pura Appl. , vol.54 , pp. 325-333
    • Hlawka, E.1
  • 30
    • 0005458392 scopus 로고
    • Über eine zahlentheoretische methode zur numerischen integration und zur behandlung von integralgleichungen
    • R. F. Tichy, "Über eine zahlentheoretische methode zur numerischen integration und zur behandlung von integralgleichungen," Sitzungsber. Österr. Akad. Wiss. Math.-Natur. Kl. II, vol. 193, pp. 329-358, 1984.
    • (1984) Sitzungsber. Österr. Akad. Wiss. Math.-Natur. Kl. II , vol.193 , pp. 329-358
    • Tichy, R.F.1
  • 32
    • 0001352321 scopus 로고
    • The distribution of points in a cube and the approximate evaluation of integrals
    • I. M. Sobol, "The distribution of points in a cube and the approximate evaluation of integrals," Zh. Vychisl. Mat. i Mat. Fiz., vol. 7, pp. 784-802, 1967.
    • (1967) Zh. Vychisl. Mat. i Mat. Fiz. , vol.7 , pp. 784-802
    • Sobol, I.M.1
  • 33
    • 8344289793 scopus 로고
    • Point sets and sequences with small discrepancy
    • H. Niederreiter, "Point sets and sequences with small discrepancy," Monatsh. Math., vol. 104, pp. 273-337, 1987.
    • (1987) Monatsh. Math. , vol.104 , pp. 273-337
    • Niederreiter, H.1
  • 35
    • 0018454769 scopus 로고
    • Fast probabilistic algorithms for hamiltonian circuits and matchings
    • D. Angluin and L. Valiant, "Fast probabilistic algorithms for hamiltonian circuits and matchings," J. Comput. Syst. Sci., vol. 18, pp. 155-193, 1979.
    • (1979) J. Comput. Syst. Sci. , vol.18 , pp. 155-193
    • Angluin, D.1    Valiant, L.2
  • 37
    • 0028756686 scopus 로고
    • Programs to generate Niederreiter's low-discrepancy sequences
    • P. Bratley, B. L. Fox, and H. Niederreiter, "Programs to generate Niederreiter's low-discrepancy sequences," ACM Trans. Math. Softw., vol. 20, no. 4, pp. 494-495, 1994.
    • (1994) ACM Trans. Math. Softw. , vol.20 , Issue.4 , pp. 494-495
    • Bratley, P.1    Fox, B.L.2    Niederreiter, H.3
  • 38
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Nov.
    • M. Hagan and M. Menhaj, "Training feedforward networks with the Marquardt algorithm," IEEE Trans. Neural Networks, vol. 5, pp. 989-993, Nov. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.1    Menhaj, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.