-
1
-
-
0019826665
-
Establishment in culture of pluripotential cells from mouse embryos
-
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292:154-156
-
(1981)
Nature
, vol.292
, pp. 154-156
-
-
Evans, M.J.1
Kaufman, M.H.2
-
2
-
-
0001007610
-
Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells
-
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981;78:7634-7638
-
(1981)
Proc Natl Acad Sci USA
, vol.78
, pp. 7634-7638
-
-
Martin, G.R.1
-
3
-
-
0032491416
-
Embryonic stem cell lines derived from human blastocysts
-
Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145-1147
-
(1998)
Science
, vol.282
, pp. 1145-1147
-
-
Thomson, J.A.1
Itskovitz-Eldor, J.2
Shapiro, S.S.3
-
4
-
-
0016269155
-
Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo
-
Friedenstein AJ, Chailakhyan RK, Latsinik NV, et al. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 1974;17:331-340
-
(1974)
Transplantation
, vol.17
, pp. 331-340
-
-
Friedenstein, A.J.1
Chailakhyan, R.K.2
Latsinik, N.V.3
-
5
-
-
0026228558
-
Mesenchymal stem cells
-
Caplan AI. Mesenchymal stem cells. J Orthop Res 1991;9:641-650
-
(1991)
J Orthop Res
, vol.9
, pp. 641-650
-
-
Caplan, A.I.1
-
6
-
-
0033515827
-
Multilineage potential of adult human mesenchymal stem cells
-
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-147
-
(1999)
Science
, vol.284
, pp. 143-147
-
-
Pittenger, M.F.1
MacKay, A.M.2
Beck, S.C.3
-
7
-
-
58449135981
-
Why are MSCs therapeutic? New data: New insight
-
Caplan A. Why are MSCs therapeutic? New data: new insight. J Pathol 2009;217:318-324
-
(2009)
J Pathol
, vol.217
, pp. 318-324
-
-
Caplan, A.1
-
8
-
-
17144469316
-
Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones
-
Kon E, Muraglia A, Corsi A, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 2000;49:328-337
-
(2000)
J Biomed Mater Res
, vol.49
, pp. 328-337
-
-
Kon, E.1
Muraglia, A.2
Corsi, A.3
-
9
-
-
0031868140
-
The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects
-
Bruder SP, Kraus KH, Goldberg VM, et al. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 1998;80:985-996
-
(1998)
J Bone Joint Surg Am
, vol.80
, pp. 985-996
-
-
Bruder, S.P.1
Kraus, K.H.2
Goldberg, V.M.3
-
10
-
-
14944382968
-
Repair of osteochondral defects with hyaluronan-and polyester-based scaffolds
-
Solchaga LA, Temenoff JS, Gao J, et al. Repair of osteochondral defects with hyaluronan-and polyester-based scaffolds. Osteoarthr Cartil 2005;13:297-309
-
(2005)
Osteoarthr Cartil
, vol.13
, pp. 297-309
-
-
Solchaga, L.A.1
Temenoff, J.S.2
Gao, J.3
-
11
-
-
77955501944
-
The use of mesenchymal stem cells in collagen-based scaffolds for tissue-engineered repair of tendons
-
Butler DL, Gooch C, Kinneberg KRC, et al. The use of mesenchymal stem cells in collagen-based scaffolds for tissue-engineered repair of tendons. Nat Protocols 2010;5(5):849-863
-
(2010)
Nat Protocols
, vol.5
, Issue.5
, pp. 849-863
-
-
Butler, D.L.1
Gooch, C.2
Krc, K.3
-
12
-
-
38049001967
-
Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation
-
Butler DL, Juncosa-Melvin N, Boivin GP, et al. Functional tissue engineering for tendon repair: a multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J Orthop Res 2008;26:1-9
-
(2008)
J Orthop Res
, vol.26
, pp. 1-9
-
-
Butler, D.L.1
Juncosa-Melvin, N.2
Boivin, G.P.3
-
13
-
-
0032124601
-
Use of mesenchymal stem cells in a collagen matrix for achilles tendon repair
-
Young RG, Butler DL, Weber W, et al. Use of mesenchymal stem cells in a collagen matrix for achilles tendon repair. J Orthop Res 1998;16:406-413
-
(1998)
J Orthop Res
, vol.16
, pp. 406-413
-
-
Young, R.G.1
Butler, D.L.2
Weber, W.3
-
15
-
-
70350243075
-
Introducing transcription factors to multipotent mesenchymal stem cells: Making transdifferentiation possible
-
Barzilay R, Melamed E, Offen D. Introducing transcription factors to multipotent mesenchymal stem cells: making transdifferentiation possible. Stem Cells 2009;27:2509-2515
-
(2009)
Stem Cells
, vol.27
, pp. 2509-2515
-
-
Barzilay, R.1
Melamed, E.2
Offen, D.3
-
16
-
-
0032874061
-
Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains
-
Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 1999;96:10711-10716
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 10711-10716
-
-
Kopen, G.C.1
Prockop, D.J.2
Phinney, D.G.3
-
17
-
-
33745499805
-
Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation
-
Deng J, Petersen BE, Steindler DA, et al. Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 2006;24:1054-1064
-
(2006)
Stem Cells
, vol.24
, pp. 1054-1064
-
-
Deng, J.1
Petersen, B.E.2
Steindler, D.A.3
-
18
-
-
0037417901
-
Transplanted bone marrow generates new neurons in human brains
-
Mezey A, Key S, Vogelsang G, et al. Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci USA 2003;100:1364-1369
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 1364-1369
-
-
Mezey, A.1
Key, S.2
Vogelsang, G.3
-
19
-
-
42349097728
-
Autologous mesenchymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy
-
Lee PH, Kim JW, Bang OY, et al. Autologous mesenchymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy. Clin Pharmacol Ther 2007;83:723-730
-
(2007)
Clin Pharmacol Ther
, vol.83
, pp. 723-730
-
-
Lee, P.H.1
Kim, J.W.2
Bang, O.Y.3
-
20
-
-
56249148884
-
Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro
-
Rose RA, Jiang H, Wang X, et al. Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells 2008;26:2884-2892
-
(2008)
Stem Cells
, vol.26
, pp. 2884-2892
-
-
Rose, R.A.1
Jiang, H.2
Wang, X.3
-
21
-
-
20444419744
-
Autologous mesenchymal stem cell transplantation in stroke patients
-
Bang OY, Lee JS, Lee PH, et al. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 2005;57:874-882
-
(2005)
Ann Neurol
, vol.57
, pp. 874-882
-
-
Bang, O.Y.1
Lee, J.S.2
Lee, P.H.3
-
22
-
-
0032489651
-
Muscle regeneration by bone marrow-derived myogenic progenitors
-
Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998;279:1528-1530
-
(1998)
Science
, vol.279
, pp. 1528-1530
-
-
Ferrari, G.1
Cusella-De Angelis, G.2
Coletta, M.3
-
23
-
-
77949457175
-
The generation of hepatocytes from mesenchymal stem cells and engraftment into murine liver
-
Stock P, Bruckner S, Ebensing S, et al. The generation of hepatocytes from mesenchymal stem cells and engraftment into murine liver. Nat Protocols 2010;5:617-627
-
(2010)
Nat Protocols
, vol.5
, pp. 617-627
-
-
Stock, P.1
Bruckner, S.2
Ebensing, S.3
-
24
-
-
77952686652
-
Unique multipotent cells in adult human mesenchymal cell populations
-
Kuroda Y, Kitada M, Wakao S, et al. Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci USA 2010;107:8639-8643
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 8639-8643
-
-
Kuroda, Y.1
Kitada, M.2
Wakao, S.3
-
25
-
-
15944376184
-
Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells
-
Glennie S, Soeiro I, Dyson PJ, et al. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005;105:2821-2827
-
(2005)
Blood
, vol.105
, pp. 2821-2827
-
-
Glennie, S.1
Soeiro, I.2
Dyson, P.J.3
-
26
-
-
32644438233
-
Mesenchymal stem cell-natural killer cell interactions: Evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation
-
Spaggiari GM, Capobianco A, Becchetti S, et al. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 2006;107:1484-1490
-
(2006)
Blood
, vol.107
, pp. 1484-1490
-
-
Spaggiari, G.M.1
Capobianco, A.2
Becchetti, S.3
-
27
-
-
2342482526
-
Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells
-
Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004;363:1439-1441
-
(2004)
Lancet
, vol.363
, pp. 1439-1441
-
-
Le Blanc, K.1
Rasmusson, I.2
Sundberg, B.3
-
28
-
-
33744913533
-
Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease
-
Ringden O, Uzunel M, Rasmusson I, et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 2006;81:1390-1397
-
(2006)
Transplantation
, vol.81
, pp. 1390-1397
-
-
Ringden, O.1
Uzunel, M.2
Rasmusson, I.3
-
29
-
-
0141886188
-
Veto-like activity of mesenchymal stem cells: Functional discrimination between cellular responses to alloantigens and recall antigens
-
Potian J, Aviv H, Ponzio N, et al. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol 2003;171:3426-3434
-
(2003)
J Immunol
, vol.171
, pp. 3426-3434
-
-
Potian, J.1
Aviv, H.2
Ponzio, N.3
-
30
-
-
56149110595
-
Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells
-
Casiraghi F, Azzollini N, Cassis P, et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J Immunol 2008;181:3933-3946
-
(2008)
J Immunol
, vol.181
, pp. 3933-3946
-
-
Casiraghi, F.1
Azzollini, N.2
Cassis, P.3
-
31
-
-
33745503987
-
Mesenchymal stem cells reside in virtually all post-natal organs and tissues
-
Meirelles LdS, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006;119:2204-2213
-
(2006)
J Cell Sci
, vol.119
, pp. 2204-2213
-
-
Lds, M.1
Chagastelles, P.C.2
Nardi, N.B.3
-
32
-
-
34548788688
-
Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow)
-
Beltrami AP, Cesselli D, Bergamin N, et al. Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood 2007;110:3438-3446
-
(2007)
Blood
, vol.110
, pp. 3438-3446
-
-
Beltrami, A.P.1
Cesselli, D.2
Bergamin, N.3
-
33
-
-
42249092647
-
Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts
-
Covas DT, Panepucci RA, Fontes AM, et al. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 2008;36:642-654
-
(2008)
Exp Hematol
, vol.36
, pp. 642-654
-
-
Covas, D.T.1
Panepucci, R.A.2
Fontes, A.M.3
-
34
-
-
77954272859
-
Identical, similar or different? Learning about immunomodulatory function of mesenchymal stem cells isolated from various mouse tissues: Bone marrow, spleen, thymus and aorta wall
-
Hegyi B, Sagi B, Kovacs J, et al. Identical, similar or different? Learning about immunomodulatory function of mesenchymal stem cells isolated from various mouse tissues: bone marrow, spleen, thymus and aorta wall. Int Immunol 2010;22:551-559
-
(2010)
Int Immunol
, vol.22
, pp. 551-559
-
-
Hegyi, B.1
Sagi, B.2
Kovacs, J.3
-
35
-
-
57049181965
-
Erythropoietin expands a stromal cell population that can mediate renoprotection
-
Bi B, Guo J, Marlier A, et al. Erythropoietin expands a stromal cell population that can mediate renoprotection. Am J Physiol Renal Physiol 2008;295:F1017-22
-
(2008)
Am J Physiol Renal Physiol
, vol.295
-
-
Bi, B.1
Guo, J.2
Marlier, A.3
-
36
-
-
0023394134
-
Purification of human erythroid colony-forming units and demonstration of specific binding of erythropoietin
-
Sawada K, Krantz S, Kans J, et al. Purification of human erythroid colony-forming units and demonstration of specific binding of erythropoietin. J Clin Invest 1987;80:357-366
-
(1987)
J Clin Invest
, vol.80
, pp. 357-366
-
-
Sawada, K.1
Krantz, S.2
Kans, J.3
-
37
-
-
33947281784
-
Erythropoietin, a hypoxia-regulated factor, elicits a pro-angiogenic program in human mesenchymal stem cells
-
Zwezdaryk K, Coffelt S, Figueroa Y, et al. Erythropoietin, a hypoxia-regulated factor, elicits a pro-angiogenic program in human mesenchymal stem cells. Exp Hematol 2007;35:640-652
-
(2007)
Exp Hematol
, vol.35
, pp. 640-652
-
-
Zwezdaryk, K.1
Coffelt, S.2
Figueroa, Y.3
-
38
-
-
58149345104
-
IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1a/CXCR4 signaling to promote myocardial pepair
-
Haider HK, Jiang S, Idris NM, et al. IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1a/CXCR4 signaling to promote myocardial pepair. Circ Res 2008;103:1300-1308
-
(2008)
Circ Res
, vol.103
, pp. 1300-1308
-
-
Haider, H.K.1
Jiang, S.2
Idris, N.M.3
-
39
-
-
55149104978
-
Mesenchymal stem cells and cardiac repair
-
Nesselmann C, Ma N, Bieback K, et al. Mesenchymal stem cells and cardiac repair. J Cell Mol Med 2008;12:1795-1810
-
(2008)
J Cell Mol Med
, vol.12
, pp. 1795-1810
-
-
Nesselmann, C.1
Ma, N.2
Bieback, K.3
-
40
-
-
18244407799
-
Steps toward mapping the human vasculature by phage display
-
Arap W, Kolonin M, Trepel M, et al. Steps toward mapping the human vasculature by phage display. Nat Med 2002;8:121-127
-
(2002)
Nat Med
, vol.8
, pp. 121-127
-
-
Arap, W.1
Kolonin, M.2
Trepel, M.3
-
41
-
-
33845277598
-
Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells
-
Ruster B, Gottig S, Ludwig R, et al. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 2006;108:3938-3944
-
(2006)
Blood
, vol.108
, pp. 3938-3944
-
-
Ruster, B.1
Gottig, S.2
Ludwig, R.3
-
42
-
-
34249290744
-
Recent advances into the understanding of mesenchymal stem cell trafficking
-
Fox J, Chamberlain G, Ashton B, et al. Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol 2007;137:491-502
-
(2007)
Br J Haematol
, vol.137
, pp. 491-502
-
-
Fox, J.1
Chamberlain, G.2
Ashton, B.3
-
43
-
-
70349510607
-
Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine
-
Huang GT-J, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 2009;88:792-806
-
(2009)
J Dent Res
, vol.88
, pp. 792-806
-
-
Gt-J, H.1
Gronthos, S.2
Shi, S.3
-
44
-
-
33745437684
-
Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue
-
Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006;24:1294-1301
-
(2006)
Stem Cells
, vol.24
, pp. 1294-1301
-
-
Kern, S.1
Eichler, H.2
Stoeve, J.3
-
45
-
-
33747713246
-
Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement
-
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315-317
-
(2006)
Cytotherapy
, vol.8
, pp. 315-317
-
-
Dominici, M.1
Le Blanc, K.2
Mueller, I.3
-
46
-
-
77749320194
-
A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone
-
Zhu H, Guo Z-K, Jiang X-X, et al. A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat Protocols 2010;5:550-560
-
(2010)
Nat Protocols
, vol.5
, pp. 550-560
-
-
Zhu, H.1
Guo, Z.-K.2
Jiang, X.-X.3
-
47
-
-
0018102359
-
The relationship between the spleen colony-forming cell and the haemopoietic stem cell
-
Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978;4:7-25
-
(1978)
Blood Cells
, vol.4
, pp. 7-25
-
-
Schofield, R.1
-
48
-
-
77952160197
-
Compartmentalized organization: A common and required feature of stem cell niches?
-
Greco V, Guo S. Compartmentalized organization: a common and required feature of stem cell niches? Development 2010;137:1586-1594
-
(2010)
Development
, vol.137
, pp. 1586-1594
-
-
Greco, V.1
Guo, S.2
-
49
-
-
75349083520
-
Stem cells and the niche: A dynamic duo
-
Voog J, Jones DL. Stem cells and the niche: a dynamic duo. Cell Stem Cell 2010;6:103-115
-
(2010)
Cell Stem Cell
, vol.6
, pp. 103-115
-
-
Voog, J.1
Jones, D.L.2
-
51
-
-
0242363225
-
Identification of the haematopoietic stem cell niche and control of the niche size
-
Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003;425:836-841
-
(2003)
Nature
, vol.425
, pp. 836-841
-
-
Zhang, J.1
Niu, C.2
Ye, L.3
-
52
-
-
0242268524
-
Osteoblastic cells regulate the haematopoietic stem cell niche
-
Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003;425:841-846
-
(2003)
Nature
, vol.425
, pp. 841-846
-
-
Calvi, L.M.1
Adams, G.B.2
Weibrecht, K.W.3
-
53
-
-
35348921682
-
Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment
-
Sacchetti B, Funari A, Michienzi S, et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 2007;131:324-336
-
(2007)
Cell
, vol.131
, pp. 324-336
-
-
Sacchetti, B.1
Funari, A.2
Michienzi, S.3
-
54
-
-
21244463426
-
SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells
-
Kiel MJ, Yilmaz mH, Iwashita T, et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005;121:1109-1121
-
(2005)
Cell
, vol.121
, pp. 1109-1121
-
-
Kiel, M.J.1
Yilmaz, M.H.2
Iwashita, T.3
-
55
-
-
65349113780
-
MSC frequency correlates with blood vessel density in equine adipose tissue
-
da Silva Meirelles L, Sand TT, Harman RJ, et al. MSC frequency correlates with blood vessel density in equine adipose tissue. Tissue Eng Part A 2009;15:221-229
-
(2009)
Tissue Eng Part A
, vol.15
, pp. 221-229
-
-
Da Silva Meirelles, L.1
Sand, T.T.2
Harman, R.J.3
-
56
-
-
55049092713
-
In search of the in vivo identity of mesenchymal stem cells
-
Meirelles LdS, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells 2008;26:2287-2299
-
(2008)
Stem Cells
, vol.26
, pp. 2287-2299
-
-
Lds, M.1
Caplan, A.I.2
Nardi, N.B.3
-
57
-
-
0042306316
-
Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp
-
Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 2003;18:696-704
-
(2003)
J Bone Miner Res
, vol.18
, pp. 696-704
-
-
Shi, S.1
Gronthos, S.2
-
58
-
-
67651097686
-
Isolation and characterization of resident mesenchymal stem cells in human glomeruli
-
Bruno S, Bussolati B, Grange C, et al. Isolation and characterization of resident mesenchymal stem cells in human glomeruli. Stem Cells Dev 2009;18:867-880
-
(2009)
Stem Cells Dev
, vol.18
, pp. 867-880
-
-
Bruno, S.1
Bussolati, B.2
Grange, C.3
-
59
-
-
34147131808
-
Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts
-
Lama V, Smith L, Badri L, et al. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest 2007;117:989-996
-
(2007)
J Clin Invest
, vol.117
, pp. 989-996
-
-
Lama, V.1
Smith, L.2
Badri, L.3
-
60
-
-
56149111927
-
Lung resident mesenchymal stem cells isolated from human lung allografts inhibit T Cell proliferation via a soluble mediator
-
Jarvinen L, Badri L, Wettlaufer S, et al. Lung resident mesenchymal stem cells isolated from human lung allografts inhibit T Cell proliferation via a soluble mediator. J Immunol 2008;181:4389-4396
-
(2008)
J Immunol
, vol.181
, pp. 4389-4396
-
-
Jarvinen, L.1
Badri, L.2
Wettlaufer, S.3
-
61
-
-
70349790426
-
Perivascular multipotent progenitor cells in human organs
-
Crisan M, Chen C-W, Corselli M, et al. Perivascular multipotent progenitor cells in human organs. Ann NY Acad Sci 2009;1176:118-123
-
(2009)
Ann NY Acad Sci
, vol.1176
, pp. 118-123
-
-
Crisan, M.1
Chen, C.-W.2
Corselli, M.3
-
62
-
-
50849139576
-
A perivascular origin for mesenchymal stem cells in multiple human organs
-
Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008;3:301-313
-
(2008)
Cell Stem Cell
, vol.3
, pp. 301-313
-
-
Crisan, M.1
Yap, S.2
Casteilla, L.3
-
64
-
-
77956684809
-
Regulation of mesenchymal stem cell activity by endothelial cells
-
published online 10 Jun 2010, doi:10.1089/scd.2010.0168
-
Saleh FA, Whyte M, Ashton P, et al. Regulation of mesenchymal stem cell activity by endothelial cells. Stem Cells Dev 2010: published online 10 Jun 2010, doi:10.1089/scd.2010.0168
-
(2010)
Stem Cells Dev
-
-
Saleh, F.A.1
Whyte, M.2
Ashton, P.3
-
65
-
-
20144370145
-
Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance
-
Duncan AW, Rattis FM, DiMascio LN, et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005;6:314-322
-
(2005)
Nat Immunol
, vol.6
, pp. 314-322
-
-
Duncan, A.W.1
Rattis, F.M.2
Dimascio, L.N.3
-
66
-
-
34648814084
-
Crosstalk between Wnt and Notch signaling in intestinal epithelial cell fate decision
-
Nakamura T, Tsuchiya K, Watanabe M. Crosstalk between Wnt and Notch signaling in intestinal epithelial cell fate decision. J Gastroenterol 2007;42:705-710
-
(2007)
J Gastroenterol
, vol.42
, pp. 705-710
-
-
Nakamura, T.1
Tsuchiya, K.2
Watanabe, M.3
-
67
-
-
19544375032
-
Wnt control of stem cells and differentiation in the intestinal epithelium
-
Pinto D, Clevers H. Wnt control of stem cells and differentiation in the intestinal epithelium. Exp Cell Res 2005;306:357-363
-
(2005)
Exp Cell Res
, vol.306
, pp. 357-363
-
-
Pinto, D.1
Clevers, H.2
-
68
-
-
58949101489
-
Intestinal stem cells in mammals and drosophila
-
Casali A, Batlle E. Intestinal stem cells in mammals and drosophila. Cell Stem Cell 2009;4:124-127
-
(2009)
Cell Stem Cell
, vol.4
, pp. 124-127
-
-
Casali, A.1
Batlle, E.2
-
69
-
-
59649100796
-
Wnt signaling controls the fate of mesenchymal stem cells
-
Ling L, Nurcombe V, Cool SM. Wnt signaling controls the fate of mesenchymal stem cells. Gene 2009;433:1-7
-
(2009)
Gene
, vol.433
, pp. 1-7
-
-
Ling, L.1
Nurcombe, V.2
Cool, S.M.3
-
70
-
-
77953851809
-
The balance of WNT and FGF signaling influences mesenchymal stem cell fate during skeletal development
-
published online 25 May 2010, doi:10.1126/ scisignal.2000727
-
Maruyama T, Mirando AJ, Deng C-X, et al. The balance of WNT and FGF signaling influences mesenchymal stem cell fate during skeletal development. Sci Signal 2010;3(123):ra40: published online 25 May 2010, doi:10.1126/ scisignal.2000727
-
(2010)
Sci Signal
, vol.3
, Issue.123
-
-
Maruyama, T.1
Mirando, A.J.2
Deng, C.-X.3
-
71
-
-
40449084522
-
Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation
-
Hilton MJ, Tu X, Wu X, et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 2008;14:306-314
-
(2008)
Nat Med
, vol.14
, pp. 306-314
-
-
Hilton, M.J.1
Tu, X.2
Wu, X.3
-
72
-
-
0022567611
-
The pericyte-a review
-
Sims DE. The pericyte-a review. Tissue Cell 1986;18:153-174
-
(1986)
Tissue Cell
, vol.18
, pp. 153-174
-
-
Sims, D.E.1
-
73
-
-
33748801491
-
Pericytes and their role in microvasculature homeostasis
-
Edelman DA, Jiang Y, Tyburski J, et al. Pericytes and their role in microvasculature homeostasis. J Surg Res 2006;135(2):305-311
-
(2006)
J Surg Res
, vol.135
, Issue.2
, pp. 305-311
-
-
Edelman, D.A.1
Jiang, Y.2
Tyburski, J.3
-
75
-
-
27644557532
-
The role of pericytes in blood-vessel formation and maintenance
-
Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro-oncol 2005;7:452-464
-
(2005)
Neurooncol
, vol.7
, pp. 452-464
-
-
Bergers, G.1
Song, S.2
-
76
-
-
0038714289
-
Endothelial signaling during development
-
Cleaver O, Melton DA. Endothelial signaling during development. Nat Med 2003;9:661-668
-
(2003)
Nat Med
, vol.9
, pp. 661-668
-
-
Cleaver, O.1
Melton, D.A.2
-
77
-
-
2342431290
-
Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities
-
Bjarnegard M, Enge M, Norlin J, et al. Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development 2004;131:1847-1857
-
(2004)
Development
, vol.131
, pp. 1847-1857
-
-
Bjarnegard, M.1
Enge, M.2
Norlin, J.3
-
78
-
-
0035972251
-
Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis
-
Hellstrom M, Gerhardt H, Kalen M, et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 2001;153:543-554
-
(2001)
J Cell Biol
, vol.153
, pp. 543-554
-
-
Hellstrom, M.1
Gerhardt, H.2
Kalen, M.3
-
79
-
-
0030756325
-
Pericyte loss and microaneurysm formation in PDGF-B-deficient mice
-
Lindahl P, Johansson BR, Leveen P, et al. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 1997;277:242-245
-
(1997)
Science
, vol.277
, pp. 242-245
-
-
Lindahl, P.1
Johansson, B.R.2
Leveen, P.3
-
80
-
-
0023550339
-
The glomerular mesangial cell: An expanding role for a specialized pericyte
-
Schlondorff D. The glomerular mesangial cell: an expanding role for a specialized pericyte. FASEB J 1987;1:272-281
-
(1987)
FASEB J
, vol.1
, pp. 272-281
-
-
Schlondorff, D.1
-
81
-
-
0342466799
-
Glomerular mesangial cells: Electrophysiology and regulation of contraction
-
Stockand JD, Sansom SC. Glomerular mesangial cells: electrophysiology and regulation of contraction. Physiol Rev 1998;78:723-744
-
(1998)
Physiol Rev
, vol.78
, pp. 723-744
-
-
Stockand, J.D.1
Sansom, S.C.2
-
82
-
-
0029011135
-
Hepatic stellate (ITO) cells: Expanding roles for a liver-specific pericyte
-
Pinzani M. Hepatic stellate (ITO) cells: expanding roles for a liver-specific pericyte. J Hepatol 1995;22:700-706
-
(1995)
J Hepatol
, vol.22
, pp. 700-706
-
-
Pinzani, M.1
-
83
-
-
68849128539
-
Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche
-
Diaz-Flores L, Gutierrez R, Madrid JF, et al. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 2009;24:909-969
-
(2009)
Histol Histopathol
, vol.24
, pp. 909-969
-
-
Diaz-Flores, L.1
Gutierrez, R.2
Madrid, J.F.3
-
84
-
-
0035038659
-
The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain
-
Etchevers HC, Vincent C, Le Douarin NM, et al. The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 2001;128:1059-1068
-
(2001)
Development
, vol.128
, pp. 1059-1068
-
-
Etchevers, H.C.1
Vincent, C.2
Le Douarin, N.M.3
-
87
-
-
40149097274
-
Sclerotomal origin of vascular smooth muscle cells and pericytes in the embryo
-
Pouget C, Pottin K, Jaffredo T. Sclerotomal origin of vascular smooth muscle cells and pericytes in the embryo. Dev Biol 2008;315:437-447
-
(2008)
Dev Biol
, vol.315
, pp. 437-447
-
-
Pouget, C.1
Pottin, K.2
Jaffredo, T.3
-
88
-
-
0025778643
-
Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin
-
Nehls V, Drenckhahn D. Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. J Cell Biol 1991;113:147-154
-
(1991)
J Cell Biol
, vol.113
, pp. 147-154
-
-
Nehls, V.1
Drenckhahn, D.2
-
89
-
-
0001014035
-
Vascular smooth muscle cells differ from other smooth muscle cells: Predominance of vimentin filaments and a specific alpha-type actin
-
Gabbiani G, Schmid E, Winter S, et al. Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific alpha-type actin. Proc Natl Acad Sci USA 1981;78:298-302
-
(1981)
Proc Natl Acad Sci USA
, vol.78
, pp. 298-302
-
-
Gabbiani, G.1
Schmid, E.2
Winter, S.3
-
90
-
-
0031893168
-
Chimaeric analysis reveals role of Pdgf receptors in all muscle lineages
-
Crosby JR, Seifert RA, Soriano P, et al. Chimaeric analysis reveals role of Pdgf receptors in all muscle lineages. Nat Genet 1998;18:385-388
-
(1998)
Nat Genet
, vol.18
, pp. 385-388
-
-
Crosby, J.R.1
Seifert, R.A.2
Soriano, P.3
-
91
-
-
0032768156
-
Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse
-
Hellstrom M, Kal n M, Lindahl P, et al. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 1999;126:3047-3055
-
(1999)
Development
, vol.126
, pp. 3047-3055
-
-
Hellstrom, M.1
Kaln, M.2
Lindahl, P.3
-
92
-
-
0034796499
-
NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis
-
Ozerdem U, Grako KA, Dahlin-Huppe K, et al. NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 2001;222:218-227
-
(2001)
Dev Dyn
, vol.222
, pp. 218-227
-
-
Ozerdem, U.1
Grako, K.A.2
Dahlin-Huppe, K.3
-
93
-
-
0345505671
-
Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells
-
Bondjers C, Kalen M, Hellstrom M, et al. Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. Am J Pathol 2003;162:721-729
-
(2003)
Am J Pathol
, vol.162
, pp. 721-729
-
-
Bondjers, C.1
Kalen, M.2
Hellstrom, M.3
-
94
-
-
65649110132
-
Regulator of G protein signaling 5: A new player in vascular remodeling
-
Manzur M, Ganss R. Regulator of G protein signaling 5: a new player in vascular remodeling. Trends Cardiovasc Med 2009;19:26-30
-
(2009)
Trends Cardiovasc Med
, vol.19
, pp. 26-30
-
-
Manzur, M.1
Ganss, R.2
-
95
-
-
0023920212
-
A monoclonal antibody (3G5)-defined ganglioside antigen is expressed on the cell surface of microvascular pericytes
-
Nayak RC, Berman AB, George KL, et al. A monoclonal antibody (3G5)-defined ganglioside antigen is expressed on the cell surface of microvascular pericytes. J Exp Med 1988;167:1003-1015
-
(1988)
J Exp Med
, vol.167
, pp. 1003-1015
-
-
Nayak, R.C.1
Berman, A.B.2
George, K.L.3
-
96
-
-
0031952288
-
Continuous subendothelial network formed by pericyte-like cells in human vascular bed
-
Andreeva ER, Pugach IM, Gordon D, et al. Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue Cell 1998;30:127-135
-
(1998)
Tissue Cell
, vol.30
, pp. 127-135
-
-
Andreeva, E.R.1
Pugach, I.M.2
Gordon, D.3
-
97
-
-
21244460348
-
Perivascular cells expressing annexin A5 define a novel mesenchymal stem cell-like population with the capacity to differentiate into multiple mesenchymal lineages
-
Brachvogel B, Moch H, Pausch F, et al. Perivascular cells expressing annexin A5 define a novel mesenchymal stem cell-like population with the capacity to differentiate into multiple mesenchymal lineages. Development 2005;132:2657-2668
-
(2005)
Development
, vol.132
, pp. 2657-2668
-
-
Brachvogel, B.1
Moch, H.2
Pausch, F.3
-
98
-
-
49449091427
-
Msx1 and Msx2 are expressed in sub-populations of vascular smooth muscle cells
-
Goupille O, Cloment CS, Lopes M, et al. Msx1 and Msx2 are expressed in sub-populations of vascular smooth muscle cells. Dev Dyn 2008;237:2187-2194
-
(2008)
Dev Dyn
, vol.237
, pp. 2187-2194
-
-
Goupille, O.1
Cloment, C.S.2
Lopes, M.3
-
99
-
-
0021858001
-
Induced regeneration of calvaria by bone morphogenetic protein (BMP) in dogs
-
Sato K, Urist MR. Induced regeneration of calvaria by bone morphogenetic protein (BMP) in dogs. Clin Orthop Relat Res 1985;197:301-311
-
(1985)
Clin Orthop Relat Res
, vol.197
, pp. 301-311
-
-
Sato, K.1
Urist, M.R.2
-
100
-
-
0026045958
-
Capillary pericytes: Perspectives and future trends
-
Tilton RG. Capillary pericytes: perspectives and future trends. J Electron Microsc Tech 1991;19:327-344
-
(1991)
J Electron Microsc Tech
, vol.19
, pp. 327-344
-
-
Tilton, R.G.1
-
101
-
-
19044398689
-
Angiogenesis and pericytes in the initiation of ectopic calcification
-
Collett GDM, Canfield AE. Angiogenesis and pericytes in the initiation of ectopic calcification. Circ Res 2005;96:930-938
-
(2005)
Circ Res
, vol.96
, pp. 930-938
-
-
Gdm, C.1
Canfield, A.E.2
-
102
-
-
0025123315
-
Pericytes derived from the retinal microvasculature undergo calcification in vitro
-
Schor A, Allen T, Canfield A, et al. Pericytes derived from the retinal microvasculature undergo calcification in vitro. J Cell Sci 1990;97:449-461
-
(1990)
J Cell Sci
, vol.97
, pp. 449-461
-
-
Schor, A.1
Allen, T.2
Canfield, A.3
-
103
-
-
0006535318
-
Role of pericytes in vascular calcification: A review
-
Canfield AE, Doherty MJ, Wood AC, et al. Role of pericytes in vascular calcification: a review. Z Kardiol 2000;89(Suppl 2):S20-7
-
(2000)
Z Kardiol
, vol.89
, Issue.SUPPL. 2
-
-
Canfield, A.E.1
Doherty, M.J.2
Wood, A.C.3
-
104
-
-
0031955152
-
Vascular pericytes express osteogenic potential in vitro and in vivo
-
Doherty MJ, Ashton BA, Walsh S, et al. Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 1998;13:828-838
-
(1998)
J Bone Miner Res
, vol.13
, pp. 828-838
-
-
Doherty, M.J.1
Ashton, B.A.2
Walsh, S.3
-
105
-
-
5644222546
-
Chondrogenic and adipogenic potential of microvascular pericytes
-
Farrington-Rock C, Crofts NJ, Doherty MJ, et al. Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 2004;110:2226-2232
-
(2004)
Circulation
, vol.110
, pp. 2226-2232
-
-
Farrington-Rock, C.1
Crofts, N.J.2
Doherty, M.J.3
-
106
-
-
33646383618
-
CNS microvascular pericytes exhibit multipotential stem cell activity
-
Dore-Duffy P, Katychev A, Wang X, et al. CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab 2006;26:613-624
-
(2006)
J Cereb Blood Flow Metab
, vol.26
, pp. 613-624
-
-
Dore-Duffy, P.1
Katychev, A.2
Wang, X.3
-
107
-
-
0017836440
-
The effect of continued hypoxia on rat pulmonary arterial circulation. An ultrastructural study
-
Meyrick B, Reid L. The effect of continued hypoxia on rat pulmonary arterial circulation. An ultrastructural study. Lab Invest 1978;38:188-200
-
(1978)
Lab Invest
, vol.38
, pp. 188-200
-
-
Meyrick, B.1
Reid, L.2
-
108
-
-
0018333675
-
Hypoxia and incorporation of 3H-thymidine by cells of the rat pulmonary arteries and alveolar wall
-
Meyrick B, Reid L. Hypoxia and incorporation of 3H-thymidine by cells of the rat pulmonary arteries and alveolar wall. Am J Pathol 1979;96:51-70
-
(1979)
Am J Pathol
, vol.96
, pp. 51-70
-
-
Meyrick, B.1
Reid, L.2
-
109
-
-
13844281622
-
Activation of human dental pulp progenitor/stem cells in response to odontoblast injury
-
Tecles O, Laurent P, Zygouritsas S, et al. Activation of human dental pulp progenitor/stem cells in response to odontoblast injury. Arch Oral Biol 2005;50:103-108
-
(2005)
Arch Oral Biol
, vol.50
, pp. 103-108
-
-
Tecles, O.1
Laurent, P.2
Zygouritsas, S.3
-
110
-
-
36749042631
-
Coexpression of Notch3 and Rgs5 in the pericyte-vascular smooth muscle cell axis in response to pulp injury
-
Lovschall H, Mitsiadis TA, Poulsen K, et al. Coexpression of Notch3 and Rgs5 in the pericyte-vascular smooth muscle cell axis in response to pulp injury. Int J Dev Biol 2007;51:715-721
-
(2007)
Int J Dev Biol
, vol.51
, pp. 715-721
-
-
Lovschall, H.1
Mitsiadis, T.A.2
Poulsen, K.3
-
111
-
-
0018575901
-
A comparison of cell replacement in bone marrow, testis and three regions of surface epithelium
-
Potten CS, Schofield R, Lajtha LG. A comparison of cell replacement in bone marrow, testis and three regions of surface epithelium. Biochimica et Biophysica Acta 1979;560:281-299
-
(1979)
Biochimica et Biophysica Acta
, vol.560
, pp. 281-299
-
-
Potten, C.S.1
Schofield, R.2
Lajtha, L.G.3
-
112
-
-
0021869357
-
Progenitor cell populations in the periodontal ligament of mice
-
McCulloch CA. Progenitor cell populations in the periodontal ligament of mice. Anat Rec 1985;211:258-262
-
(1985)
Anat Rec
, vol.211
, pp. 258-262
-
-
McCulloch, C.A.1
-
113
-
-
33747618211
-
Identification of label-retaining cells in mouse endometrium
-
Chan RW, Gargett CE. Identification of label-retaining cells in mouse endometrium. Stem Cells 2006;24:1529-1538
-
(2006)
Stem Cells
, vol.24
, pp. 1529-1538
-
-
Chan, R.W.1
Gargett, C.E.2
-
114
-
-
0035164912
-
A novel transgenic marker for migrating limb muscle precursors and for vascular smooth muscle cells
-
Tidhar A, Reichenstein M, Cohen D, et al. A novel transgenic marker for migrating limb muscle precursors and for vascular smooth muscle cells. Dev Dyn 2001;220:60-73
-
(2001)
Dev Dyn
, vol.220
, pp. 60-73
-
-
Tidhar, A.1
Reichenstein, M.2
Cohen, D.3
|