메뉴 건너뛰기




Volumn E92-B, Issue 6, 2009, Pages 1981-1990

Unsupervised anomaly detection based on clustering and multiple one-class SVM

Author keywords

Anomaly detection; Clustering; Intrusion detection system; One class SVM

Indexed keywords

COMPUTER CRIME; MERCURY (METAL); NETWORK SECURITY; SUPPORT VECTOR MACHINES;

EID: 77956590229     PISSN: 09168516     EISSN: 17451345     Source Type: Journal    
DOI: 10.1587/transcom.E92.B.1981     Document Type: Article
Times cited : (37)

References (33)
  • 1
    • 0023294428 scopus 로고
    • An intrusion detection model
    • D. E. Denning, "An intrusion detection model, " IEEE Trans. Softw. Eng., vol. SE-13, no. 2, pp. 222-232, 1987.
    • (1987) IEEE Trans. Softw. Eng. , vol.SE-13 , Issue.2 , pp. 222-232
    • Denning, D.E.1
  • 4
    • 85027168186 scopus 로고    scopus 로고
    • http://www.snort.org
  • 5
    • 85027144621 scopus 로고    scopus 로고
    • http://www.bro-ids.org
  • 8
    • 68149183221 scopus 로고    scopus 로고
    • A clustering method for improving performance of anomaly-based intrusion detection system
    • May
    • J. Song, K. Ohira, H. Takakura, Y. Okabe and Y. Kwon, "A clustering method for improving performance of anomaly-based intrusion detection system, " IEICE Trans. Inf. & Syst., vol. E91-D, no. 5, pp. 1282-1291, May 2008.
    • (2008) IEICE Trans. Inf. & Syst. , vol.E91-D , Issue.5 , pp. 1282-1291
    • Song, J.1    Ohira, K.2    Takakura, H.3    Okabe, Y.4    Kwon, Y.5
  • 15
    • 33746860935 scopus 로고    scopus 로고
    • Unsupervised anomaly detection in network intrusion detection using clusters
    • K. Leung and C. Leckie, "Unsupervised anomaly detection in network intrusion detection using clusters, " ACSC2005, 2005.
    • (2005) ACSC2005
    • Leung, K.1    Leckie, C.2
  • 21
    • 13544269338 scopus 로고    scopus 로고
    • Application of SVM and ANN for intrusion detection
    • W. H. Chen, S. H. Hsu, and H. P. Shen, "Application of SVM and ANN for intrusion detection, " Computers & Operations Research, vol. 32, no. 10, pp. 2617-2634, 2005.
    • (2005) Computers & Operations Research , vol.32 , Issue.10 , pp. 2617-2634
    • Chen, W.H.1    Hsu, S.H.2    Shen, H.P.3
  • 22
    • 33746727630 scopus 로고    scopus 로고
    • An enhanced support vector machine model for intrusion detection
    • J. T. Yao, S. L. Zhao, and L. Fan, "An enhanced support vector machine model for intrusion detection, " LNAI4062, pp. 538-543, 2006.
    • (2006) LNAI4062 , pp. 538-543
    • Yao, J.T.1    Zhao, S.L.2    Fan, L.3
  • 23
    • 0141522774 scopus 로고    scopus 로고
    • Multi class support vector machine implementation to intrusion detection
    • T. Ambwani, "Multi class support vector machine implementation to intrusion detection, " Proc. International Joint Conference on Neural Networks, vol. 3, pp. 2300-2305, 2003.
    • (2003) Proc. International Joint Conference on Neural. Networks , vol.3 , pp. 2300-2305
    • Ambwani, T.1
  • 24
    • 37749036828 scopus 로고    scopus 로고
    • Adaptive intrusion detection based on machine learning: Feature extraction, classifier construction and sequential pattern prediction
    • X. Xu, "Adaptive intrusion detection based on machine learning: Feature extraction, classifier construction and sequential pattern prediction, " Int. J. Web Services Practices, vol. 2, no. 1-2 pp. 49-58, 2006.
    • (2006) Int. J. Web Services Practices , vol.2 , Issue.1-2 , pp. 49-58
    • Xu, X.1
  • 30
    • 3142623031 scopus 로고    scopus 로고
    • Clustering intrusion detection alarms to support root cause analysis
    • K. Julisch, "Clustering intrusion detection alarms to support root cause analysis, " ACM Trans. Information and System Security, vol. 6, no. 4, pp. 443-471, 2003.
    • (2003) ACM Trans. Information and System Security , vol.6 , Issue.4 , pp. 443-471
    • Julisch, K.1
  • 31
    • 37249023319 scopus 로고    scopus 로고
    • A comparative study of unsupervised machine learning and data mining techniques for intrusion detection
    • R. Sadoddin and A. A. Ghorbani, "A comparative study of unsupervised machine learning and data mining techniques for intrusion detection, " MLDM 2007, LNAI 4571, pp. 404-418, 2007.
    • (2007) MLDM 2007, LNAI 4571 , pp. 404-418
    • Sadoddin, R.1    Ghorbani, A.A.2
  • 32
    • 1542492748 scopus 로고    scopus 로고
    • Identifying significant features for network forensic analysis using artificial intelligent techniques
    • S. Mukkamala and A. H. Sung., "Identifying significant features for network forensic analysis using artificial intelligent techniques, " Int. J. Digital Evidence, vol. 1, no. 4, 2003.
    • (2003) Int. J. Digital Evidence , vol.1 , Issue.4
    • Mukkamala, S.1    Sung, A.H.2
  • 33
    • 85027184741 scopus 로고    scopus 로고
    • http://www.takakura.com/Kyoto-data


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.