-
1
-
-
0023294428
-
An intrusion detection model
-
D. E. Denning, "An intrusion detection model, " IEEE Trans. Softw. Eng., vol. SE-13, no. 2, pp. 222-232, 1987.
-
(1987)
IEEE Trans. Softw. Eng.
, vol.SE-13
, Issue.2
, pp. 222-232
-
-
Denning, D.E.1
-
3
-
-
0003914522
-
State of the practice of intrusion detection technologies
-
J. Allen, A. Christie, and W. Fithen, "State of the practice of intrusion detection technologies, " Technical Report, CMU/SEI-99-TR-028, 2000.
-
(2000)
Technical Report, CMU/SEI-99-TR-028
-
-
Allen, J.1
Christie, A.2
Fithen, W.3
-
4
-
-
85027168186
-
-
http://www.snort.org
-
-
-
-
5
-
-
85027144621
-
-
http://www.bro-ids.org
-
-
-
-
6
-
-
2942645420
-
Expert systems in intrusion detection: A case study
-
Baltimore, Maryland, Oct
-
M. M. Sebring, E. Shellhouse, M. E. Hanna, and R. Alan Whitehurst, "Expert systems in intrusion detection: A case study, " Proc. 11th National Computer Security Conference, pp. 74-81, Baltimore, Maryland, Oct. 1988.
-
(1988)
Proc. 11th National Computer Security Conference
, pp. 74-81
-
-
Sebring, M.M.1
Shellhouse, E.2
Hanna, M.E.3
Whitehurst, R.A.4
-
7
-
-
38349014401
-
A comprehensive approach to detect unknown attacks via intrusion detection alerts
-
Doha Qatar, Dec
-
J. Song, H. Ohba, H. Takakura, Y. Okabe, K. Ohira, and Y. Kwon, "A comprehensive approach to detect unknown attacks via intrusion detection alerts, " ASIAN2007 Focusing on Computer and Network Security, LNCS 4846, pp. 247-253, Doha Qatar, Dec. 2007.
-
(2007)
ASIAN2007 Focusing on Computer and Network Security, LNCS 4846
, pp. 247-253
-
-
Song, J.1
Ohba, H.2
Takakura, H.3
Okabe, Y.4
Ohira, K.5
Kwon, Y.6
-
8
-
-
68149183221
-
A clustering method for improving performance of anomaly-based intrusion detection system
-
May
-
J. Song, K. Ohira, H. Takakura, Y. Okabe and Y. Kwon, "A clustering method for improving performance of anomaly-based intrusion detection system, " IEICE Trans. Inf. & Syst., vol. E91-D, no. 5, pp. 1282-1291, May 2008.
-
(2008)
IEICE Trans. Inf. & Syst.
, vol.E91-D
, Issue.5
, pp. 1282-1291
-
-
Song, J.1
Ohira, K.2
Takakura, H.3
Okabe, Y.4
Kwon, Y.5
-
10
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson, "Estimating the support of a high-dimensional distribution, " Neural Comput., vol. 13, no. 7, pp. 1443-1471, 2001.
-
(2001)
Neural. Comput.
, vol.13
, Issue.7
, pp. 1443-1471
-
-
Schölkopf, B.1
Platt, J.2
Shawe-Taylor, J.3
Smola, A.4
Williamson, R.5
-
11
-
-
1542284996
-
Improving one-class SVM for anomaly detection
-
K. L. Li, H. K. Huang, S. F. Tian, and W. Xu, "Improving one-class SVM for anomaly detection, " International Conference on Machine Learning and Cybernetics, vol. 5, pp. 3077-3081, 2003.
-
(2003)
International Conference on Machine Learning and Cybernetics
, vol.5
, pp. 3077-3081
-
-
Li, K.L.1
Huang, H.K.2
Tian, S.F.3
Xu, W.4
-
12
-
-
33646005796
-
Intrusion detection system based on multi-class SVM
-
H. Lee, J. Song, and D. Park, "Intrusion detection system based on multi-class SVM, " Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2005), LNAI 3642, pp. 511-519, 2005.
-
(2005)
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2005), LNAI 3642
, pp. 511-519
-
-
Lee, H.1
Song, J.2
Park, D.3
-
13
-
-
0141797880
-
A geometric framework for unsupervised anomaly detection: Intrusion detection in unlabeled data
-
E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, "A geometric framework for unsupervised anomaly detection: Intrusion detection in unlabeled data, " Applications of Data Mining in Computer Security, 2002.
-
(2002)
Applications of Data Mining in Computer Security
-
-
Eskin, E.1
Arnold, A.2
Prerau, M.3
Portnoy, L.4
Stolfo, S.5
-
14
-
-
0141540496
-
Y-means: A clustering method for intrusion detection
-
Y. Guan, A. Ghorbani, and N. Belacel, "Y-means: A clustering method for intrusion detection, " IEEE Canadian Conference on Electrical and Computer Engineering, Proc., 2003.
-
(2003)
IEEE Canadian Conference on Electrical and Computer Engineering, Proc.
-
-
Guan, Y.1
Ghorbani, A.2
Belacel, N.3
-
15
-
-
33746860935
-
Unsupervised anomaly detection in network intrusion detection using clusters
-
K. Leung and C. Leckie, "Unsupervised anomaly detection in network intrusion detection using clusters, " ACSC2005, 2005.
-
(2005)
ACSC2005
-
-
Leung, K.1
Leckie, C.2
-
17
-
-
0030673582
-
Training support vector machines: An application to face detection
-
E. Osuna, R. Freund, and F. Girosi, "Training support vector machines: An application to face detection, " International Conference on Computer Vision and Pattern Recognition (CVPR97), pp. 130-136, 1997.
-
(1997)
International Conference on Computer Vision and Pattern Recognition (CVPR97)
, pp. 130-136
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
18
-
-
85105809948
-
Inductive learning algorithms and representations for text categorization
-
S. Dumais, J. Platt, D. Heckerman, and M. Sahami, "Inductive learning algorithms and representations for text categorization, " 7th International Conference on Information and Knowledge Management, ACM-CIKM98, pp. 148-155, 1998.
-
(1998)
7th International Conference on Information and Knowledge Management, ACM-CIKM98
, pp. 148-155
-
-
Dumais, S.1
Platt, J.2
Heckerman, D.3
Sahami, M.4
-
21
-
-
13544269338
-
Application of SVM and ANN for intrusion detection
-
W. H. Chen, S. H. Hsu, and H. P. Shen, "Application of SVM and ANN for intrusion detection, " Computers & Operations Research, vol. 32, no. 10, pp. 2617-2634, 2005.
-
(2005)
Computers & Operations Research
, vol.32
, Issue.10
, pp. 2617-2634
-
-
Chen, W.H.1
Hsu, S.H.2
Shen, H.P.3
-
22
-
-
33746727630
-
An enhanced support vector machine model for intrusion detection
-
J. T. Yao, S. L. Zhao, and L. Fan, "An enhanced support vector machine model for intrusion detection, " LNAI4062, pp. 538-543, 2006.
-
(2006)
LNAI4062
, pp. 538-543
-
-
Yao, J.T.1
Zhao, S.L.2
Fan, L.3
-
23
-
-
0141522774
-
Multi class support vector machine implementation to intrusion detection
-
T. Ambwani, "Multi class support vector machine implementation to intrusion detection, " Proc. International Joint Conference on Neural Networks, vol. 3, pp. 2300-2305, 2003.
-
(2003)
Proc. International Joint Conference on Neural. Networks
, vol.3
, pp. 2300-2305
-
-
Ambwani, T.1
-
24
-
-
37749036828
-
Adaptive intrusion detection based on machine learning: Feature extraction, classifier construction and sequential pattern prediction
-
X. Xu, "Adaptive intrusion detection based on machine learning: Feature extraction, classifier construction and sequential pattern prediction, " Int. J. Web Services Practices, vol. 2, no. 1-2 pp. 49-58, 2006.
-
(2006)
Int. J. Web Services Practices
, vol.2
, Issue.1-2
, pp. 49-58
-
-
Xu, X.1
-
26
-
-
0032676506
-
A data mining framework for building intrusion detection models
-
W. Lee, S. J. Stolfo, and K. W. Mok, "A data mining framework for building intrusion detection models, " Proc. 1999 IEEE Symposium on Security and Privacy, pp. 120-132, 1999.
-
(1999)
Proc. 1999 IEEE Symposium on Security and Privacy
, pp. 120-132
-
-
Lee, W.1
Stolfo, S.J.2
Mok, K.W.3
-
27
-
-
17544388668
-
On the capability of an SOM based intrusion detection system
-
H. G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood, "On the capability of an SOM based intrusion detection system, " Proc. International Joint Conference on Neural Networks, vol. 3, pp. 1808-1813, 2003.
-
(2003)
Proc. International Joint Conference on Neural. Networks
, vol.3
, pp. 1808-1813
-
-
Kayacik, H.G.1
Zincir-Heywood, A.N.2
Heywood, M.I.3
-
28
-
-
38049129740
-
A robust feature normalization scheme and an optimized clustering method for anomaly-based intrusion detection system
-
J. Song, H. Takakura, Y. Okabe, and Y. Kwon, "A robust feature normalization scheme and an optimized clustering method for anomaly-based intrusion detection system, " Proc. 12th International Conference on Database Systems for Advanced Applications (DASFAA 2007), LNCS 4443, pp. 140-151, 2007.
-
(2007)
Proc. 12th International Conference on Database Systems for Advanced Applications (DASFAA 2007), LNCS 4443
, pp. 140-151
-
-
Song, J.1
Takakura, H.2
Okabe, Y.3
Kwon, Y.4
-
30
-
-
3142623031
-
Clustering intrusion detection alarms to support root cause analysis
-
K. Julisch, "Clustering intrusion detection alarms to support root cause analysis, " ACM Trans. Information and System Security, vol. 6, no. 4, pp. 443-471, 2003.
-
(2003)
ACM Trans. Information and System Security
, vol.6
, Issue.4
, pp. 443-471
-
-
Julisch, K.1
-
31
-
-
37249023319
-
A comparative study of unsupervised machine learning and data mining techniques for intrusion detection
-
R. Sadoddin and A. A. Ghorbani, "A comparative study of unsupervised machine learning and data mining techniques for intrusion detection, " MLDM 2007, LNAI 4571, pp. 404-418, 2007.
-
(2007)
MLDM 2007, LNAI 4571
, pp. 404-418
-
-
Sadoddin, R.1
Ghorbani, A.A.2
-
32
-
-
1542492748
-
Identifying significant features for network forensic analysis using artificial intelligent techniques
-
S. Mukkamala and A. H. Sung., "Identifying significant features for network forensic analysis using artificial intelligent techniques, " Int. J. Digital Evidence, vol. 1, no. 4, 2003.
-
(2003)
Int. J. Digital Evidence
, vol.1
, Issue.4
-
-
Mukkamala, S.1
Sung, A.H.2
-
33
-
-
85027184741
-
-
http://www.takakura.com/Kyoto-data
-
-
-
|