메뉴 건너뛰기




Volumn 3, Issue , 2003, Pages 1808-1813

On the Capability of an SOM based Intrusion Detection System

Author keywords

Intrusion Detection Systems; Self Organizing Feature Map

Indexed keywords

COMPUTER NETWORKS; DATA MINING; LEARNING ALGORITHMS;

EID: 17544388668     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (118)

References (12)
  • 1
    • 0347742772 scopus 로고    scopus 로고
    • Intrusion detection systems and multisensor data fusion
    • April
    • T. Bass, "Intrusion detection systems and multisensor data fusion," Communications of the ACM, 43(4), pp. 99-105, April 2000.
    • (2000) Communications of the ACM , vol.43 , Issue.4 , pp. 99-105
    • Bass, T.1
  • 2
    • 0003704318 scopus 로고    scopus 로고
    • Irvine, CA: University of California, Department of Information and Computer Science
    • S. Hettich, S.D. Bay, The UCI KDD Archive. Irvine, CA: University of California, Department of Information and Computer Science, http://kdd.ics.uci.edu, 1999.
    • (1999) The UCI KDD Archive
    • Hettich, S.1    Bay, S.D.2
  • 3
    • 85019691440 scopus 로고    scopus 로고
    • Testing intrusion detection systems: A critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory
    • J. McHugh, "Testing intrusion detection systems: A critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory," ACM Transactions on Information and System Security, 3(4), pp. 262-294, 2001.
    • (2001) ACM Transactions on Information and System Security , vol.3 , Issue.4 , pp. 262-294
    • McHugh, J.1
  • 4
    • 0141797880 scopus 로고    scopus 로고
    • A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data
    • Chapter 4, D. Barbara and S. Jajodia (editors), Kluwer, ISBN 1-4020-7054-3
    • E. Eskin, A. Arnold, M. Prerau, L. Portnoy, S. Stolfo, "A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data," in Applications of Data Mining in Computer Security, Chapter 4, D. Barbara and S. Jajodia (editors), Kluwer, ISBN 1-4020-7054-3, 2002.
    • (2002) Applications of Data Mining in Computer Security
    • Eskin, E.1    Arnold, A.2    Prerau, M.3    Portnoy, L.4    Stolfo, S.5
  • 7
    • 0141574623 scopus 로고    scopus 로고
    • Information Systems Technology Group. 25 March
    • The 1998 intrusion detection off-line evaluation plan. MIT Lincoln Lab., Information Systems Technology Group. http://www.11.mit.edu/IST/ideval/docs/1998/id98-eval-11.txt, 25 March 1998.
    • (1998) The 1998 Intrusion Detection Off-line Evaluation Plan
  • 9
    • 4544256305 scopus 로고    scopus 로고
    • Bro user manual, http://www.icir.org/vern/bro-manual/index.html
    • Bro User Manual
  • 10
    • 0003410791 scopus 로고    scopus 로고
    • Springer-Verlag, ISBN 3-540-67921-9
    • rd Ed., Springer-Verlag, ISBN 3-540-67921-9, 2000.
    • (2000) rd Ed.
    • Kohonen, T.1
  • 11
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • S.L. Chiu, "Fuzzy model identification based on cluster estimation," Journal of Intelligent and Fuzzy Systems, 2, pp. 267-278, 1994.
    • (1994) Journal of Intelligent and Fuzzy Systems , vol.2 , pp. 267-278
    • Chiu, S.L.1
  • 12
    • 0141574622 scopus 로고    scopus 로고
    • Laboratory of Computer and Information Science Neural Networks Research Centre
    • Software Packages from Helsinki University of Technology, Laboratory of Computer and Information Science Neural Networks Research Centre, http://www.cis.hut.fi/research/software.shtml
    • Software Packages from Helsinki University of Technology


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.