메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages

Sample size and statistical power considerations in high-dimensionality data settings: a comparative study of classification algorithms

Author keywords

[No Author keywords available]

Indexed keywords

'OMICS' TECHNOLOGIES; BIOLOGICAL VARIATION; CLASS DISTRIBUTIONS; CLASSIFICATION ALGORITHM; FEATURE DISTRIBUTION; K-NEAREST NEIGHBORS; SIMULATION STRATEGIES; STATISTICAL SOFTWARE;

EID: 77956468993     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-11-447     Document Type: Article
Times cited : (68)

References (35)
  • 1
    • 70349249936 scopus 로고    scopus 로고
    • Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome
    • 10.1182/blood-2008-10-187203, 19443663
    • Mills KI, Kohlmann A, Williams PM, Wieczorek L, Liu WM, Li R, Wei W, Bowen DT, Loeffler H, Hernandez JM, et al. Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome. Blood 2009, 114(5):1063-1072. 10.1182/blood-2008-10-187203, 19443663.
    • (2009) Blood , vol.114 , Issue.5 , pp. 1063-1072
    • Mills, K.I.1    Kohlmann, A.2    Williams, P.M.3    Wieczorek, L.4    Liu, W.M.5    Li, R.6    Wei, W.7    Bowen, D.T.8    Loeffler, H.9    Hernandez, J.M.10
  • 2
    • 67949103390 scopus 로고    scopus 로고
    • Proteomic identification of serum biomarkers for head and neck cancer surveillance
    • 10.1002/lary.20279, 19444892
    • Gourin CG, Zhi W, Adam BL. Proteomic identification of serum biomarkers for head and neck cancer surveillance. Laryngoscope 2009, 119(7):1291-1302. 10.1002/lary.20279, 19444892.
    • (2009) Laryngoscope , vol.119 , Issue.7 , pp. 1291-1302
    • Gourin, C.G.1    Zhi, W.2    Adam, B.L.3
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman L. Random Forests. Machine Learning 2001, 45(1):5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Hart T. Nearest neighbor pattern classification. IEEE Transactions on Information Theory 1967, 13(1):21-27.
    • (1967) IEEE Transactions on Information Theory , vol.13 , Issue.1 , pp. 21-27
    • Hart, T.1
  • 6
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-vector networks. Machine Learning 1995, 20(3):273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 7
    • 9444266425 scopus 로고    scopus 로고
    • Sample size for detecting differentially expressed genes in microarray experiments
    • 10.1186/1471-2164-5-87, 533874, 15533245
    • Wei C, Li J, Bumgarner RE. Sample size for detecting differentially expressed genes in microarray experiments. BMC Genomics 2004, 5(1):87. 10.1186/1471-2164-5-87, 533874, 15533245.
    • (2004) BMC Genomics , vol.5 , Issue.1 , pp. 87
    • Wei, C.1    Li, J.2    Bumgarner, R.E.3
  • 8
    • 17444387485 scopus 로고    scopus 로고
    • Sample size for gene expression microarray experiments
    • 10.1093/bioinformatics/bti162, 15564298
    • Tsai CA, Wang SJ, Chen DT, Chen JJ. Sample size for gene expression microarray experiments. Bioinformatics 2005, 21(8):1502-1508. 10.1093/bioinformatics/bti162, 15564298.
    • (2005) Bioinformatics , vol.21 , Issue.8 , pp. 1502-1508
    • Tsai, C.A.1    Wang, S.J.2    Chen, D.T.3    Chen, J.J.4
  • 9
    • 4544298732 scopus 로고    scopus 로고
    • Sample size for identifying differentially expressed genes in microarray experiments
    • 10.1089/cmb.2004.11.714, 15579240
    • Wang SJ, Chen JJ. Sample size for identifying differentially expressed genes in microarray experiments. J Comput Biol 2004, 11(4):714-726. 10.1089/cmb.2004.11.714, 15579240.
    • (2004) J Comput Biol , vol.11 , Issue.4 , pp. 714-726
    • Wang, S.J.1    Chen, J.J.2
  • 10
    • 21644451292 scopus 로고    scopus 로고
    • Sample size calculation for multiple testing in microarray data analysis
    • 10.1093/biostatistics/kxh026, 15618534
    • Jung SH, Bang H, Young S. Sample size calculation for multiple testing in microarray data analysis. Biostatistics 2005, 6(1):157-169. 10.1093/biostatistics/kxh026, 15618534.
    • (2005) Biostatistics , vol.6 , Issue.1 , pp. 157-169
    • Jung, S.H.1    Bang, H.2    Young, S.3
  • 11
    • 28444492997 scopus 로고    scopus 로고
    • Sample size determination for the false discovery rate
    • 10.1093/bioinformatics/bti699, 16204346
    • Pounds S, Cheng C. Sample size determination for the false discovery rate. Bioinformatics 2005, 21(23):4263-4271. 10.1093/bioinformatics/bti699, 16204346.
    • (2005) Bioinformatics , vol.21 , Issue.23 , pp. 4263-4271
    • Pounds, S.1    Cheng, C.2
  • 12
    • 19544383638 scopus 로고    scopus 로고
    • Sample size determination in microarray experiments for class comparison and prognostic classification
    • 10.1093/biostatistics/kxh015, 15618525
    • Dobbin K, Simon R. Sample size determination in microarray experiments for class comparison and prognostic classification. Biostatistics 2005, 6(1):27-38. 10.1093/biostatistics/kxh015, 15618525.
    • (2005) Biostatistics , vol.6 , Issue.1 , pp. 27-38
    • Dobbin, K.1    Simon, R.2
  • 13
    • 0037114470 scopus 로고    scopus 로고
    • Power and sample size for DNA microarray studies
    • 10.1002/sim.1335, 12436455
    • Lee ML, Whitmore GA. Power and sample size for DNA microarray studies. Stat Med 2002, 21(23):3543-3570. 10.1002/sim.1335, 12436455.
    • (2002) Stat Med , vol.21 , Issue.23 , pp. 3543-3570
    • Lee, M.L.1    Whitmore, G.A.2
  • 14
    • 23244433960 scopus 로고    scopus 로고
    • FDR-controlling testing procedures and sample size determination for microarrays
    • 10.1002/sim.2119, 15977294
    • Li SS, Bigler J, Lampe JW, Potter JD, Feng Z. FDR-controlling testing procedures and sample size determination for microarrays. Stat Med 2005, 24(15):2267-2280. 10.1002/sim.2119, 15977294.
    • (2005) Stat Med , vol.24 , Issue.15 , pp. 2267-2280
    • Li, S.S.1    Bigler, J.2    Lampe, J.W.3    Potter, J.D.4    Feng, Z.5
  • 15
    • 21444454257 scopus 로고    scopus 로고
    • False discovery rate, sensitivity and sample size for microarray studies
    • 10.1093/bioinformatics/bti448, 15840707
    • Pawitan Y, Michiels S, Koscielny S, Gusnanto A, Ploner A. False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 2005, 21(13):3017-3024. 10.1093/bioinformatics/bti448, 15840707.
    • (2005) Bioinformatics , vol.21 , Issue.13 , pp. 3017-3024
    • Pawitan, Y.1    Michiels, S.2    Koscielny, S.3    Gusnanto, A.4    Ploner, A.5
  • 17
    • 0036738906 scopus 로고    scopus 로고
    • Determination of minimum sample size and discriminatory expression patterns in microarray data
    • 10.1093/bioinformatics/18.9.1184, 12217910
    • Hwang D, Schmitt WA, Stephanopoulos G. Determination of minimum sample size and discriminatory expression patterns in microarray data. Bioinformatics 2002, 18(9):1184-1193. 10.1093/bioinformatics/18.9.1184, 12217910.
    • (2002) Bioinformatics , vol.18 , Issue.9 , pp. 1184-1193
    • Hwang, D.1    Schmitt, W.A.2    Stephanopoulos, G.3
  • 18
    • 33845404310 scopus 로고    scopus 로고
    • Sample size planning for developing classifiers using high-dimensional DNA microarray data
    • 10.1093/biostatistics/kxj036, 16613833
    • Dobbin KK, Simon RM. Sample size planning for developing classifiers using high-dimensional DNA microarray data. Biostatistics 2007, 8(1):101-117. 10.1093/biostatistics/kxj036, 16613833.
    • (2007) Biostatistics , vol.8 , Issue.1 , pp. 101-117
    • Dobbin, K.K.1    Simon, R.M.2
  • 19
    • 62849087796 scopus 로고    scopus 로고
    • Factors influencing the statistical power of complex data analysis protocols for molecular signature development from microarray data
    • 10.1371/journal.pone.0004922, 2654113, 19290050
    • Aliferis CF, Statnikov A, Tsamardinos I, Schildcrout JS, Shepherd BE, Harrell FE. Factors influencing the statistical power of complex data analysis protocols for molecular signature development from microarray data. PLoS One 2009, 4(3):e4922. 10.1371/journal.pone.0004922, 2654113, 19290050.
    • (2009) PLoS One , vol.4 , Issue.3
    • Aliferis, C.F.1    Statnikov, A.2    Tsamardinos, I.3    Schildcrout, J.S.4    Shepherd, B.E.5    Harrell, F.E.6
  • 20
    • 54549099006 scopus 로고    scopus 로고
    • Performance of Feature Selection Methods in the Classification of High-Dimensional Data
    • Hua J, Tembe WD, Dougherty ER. Performance of Feature Selection Methods in the Classification of High-Dimensional Data. Pattern Recognition 2009, 42(3):15.
    • (2009) Pattern Recognition , vol.42 , Issue.3 , pp. 15
    • Hua, J.1    Tembe, W.D.2    Dougherty, E.R.3
  • 21
    • 80055091440 scopus 로고    scopus 로고
    • The R Project for Statistical Computing
    • The R Project for Statistical Computing. , http://www.r-project.org
  • 22
    • 84888285498 scopus 로고    scopus 로고
    • BG Medicine
    • BG Medicine. , http://www.bg-medicine.com
  • 23
    • 0000923503 scopus 로고
    • Asymptotic theory of certain "goodness-of-fit" criteria based on stochastic processes"
    • Anderson TW, Darling DA. Asymptotic theory of certain "goodness-of-fit" criteria based on stochastic processes". Annals of Mathematical Statistics 1952, 23:193-212.
    • (1952) Annals of Mathematical Statistics , vol.23 , pp. 193-212
    • Anderson, T.W.1    Darling, D.A.2
  • 25
    • 30744460897 scopus 로고    scopus 로고
    • Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation
    • 10.1021/ac051495j, 16408941
    • Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S, Macdonald IA, van Ommen B, Smilde AK. Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal Chem 2006, 78(2):567-574. 10.1021/ac051495j, 16408941.
    • (2006) Anal Chem , vol.78 , Issue.2 , pp. 567-574
    • Bijlsma, S.1    Bobeldijk, I.2    Verheij, E.R.3    Ramaker, R.4    Kochhar, S.5    Macdonald, I.A.6    van Ommen, B.7    Smilde, A.K.8
  • 29
    • 33645825183 scopus 로고    scopus 로고
    • Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer
    • 10.1073/pnas.0601231103, 1458674, 16585533
    • Ein-Dor L, Zuk O, Domany E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci USA 2006, 103(15):5923-5928. 10.1073/pnas.0601231103, 1458674, 16585533.
    • (2006) Proc Natl Acad Sci USA , vol.103 , Issue.15 , pp. 5923-5928
    • Ein-Dor, L.1    Zuk, O.2    Domany, E.3
  • 32
    • 84888278497 scopus 로고    scopus 로고
    • TNO Quality of Life
    • TNO Quality of Life. , http://www.tno.nl
  • 33
    • 84888278987 scopus 로고    scopus 로고
    • Rules Based Medicine Inc
    • Rules Based Medicine Inc. , http://www.rulesbasedmedicine.com
  • 35
    • 84870816675 scopus 로고    scopus 로고
    • BioConductor
    • BioConductor. , http://www.bioconductor.org


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.