메뉴 건너뛰기




Volumn 146, Issue 3, 2010, Pages 764-794

Suboptimal Solutions to Dynamic Optimization Problems via Approximations of the Policy Functions

Author keywords

Approximation schemes; Curse of dimensionality; Dynamic optimization; Dynamic programming; Suboptimal policies

Indexed keywords

ERRORS; RADIAL BASIS FUNCTION NETWORKS;

EID: 77956438081     PISSN: 00223239     EISSN: 15732878     Source Type: Journal    
DOI: 10.1007/s10957-010-9680-7     Document Type: Article
Times cited : (26)

References (51)
  • 1
    • 38149145474 scopus 로고
    • Lipschitz continuous policy functions for strongly concave optimization problems
    • Montrucchio, L.: Lipschitz continuous policy functions for strongly concave optimization problems. J. Math. Econ. 16, 259-273 (1987).
    • (1987) J. Math. Econ. , vol.16 , pp. 259-273
    • Montrucchio, L.1
  • 5
    • 0003787146 scopus 로고
    • Princeton: Princeton University Press
    • Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957).
    • (1957) Dynamic Programming
    • Bellman, R.1
  • 10
    • 0021507437 scopus 로고
    • On the approximation of infinite optimization problems with an application to optimal control problems
    • Alt, W.: On the approximation of infinite optimization problems with an application to optimal control problems. Appl. Math. Optim. 12, 15-27 (1984).
    • (1984) Appl. Math. Optim. , vol.12 , pp. 15-27
    • Alt, W.1
  • 11
    • 0036115636 scopus 로고    scopus 로고
    • Approximating networks and extended Ritz method for the solution of functional optimization problems
    • Zoppoli, R., Sanguineti, M., Parisini, T.: Approximating networks and extended Ritz method for the solution of functional optimization problems. J. Optim. Theory Appl. 112, 403-439 (2002).
    • (2002) J. Optim. Theory Appl. , vol.112 , pp. 403-439
    • Zoppoli, R.1    Sanguineti, M.2    Parisini, T.3
  • 12
    • 18744392546 scopus 로고    scopus 로고
    • Error estimates for approximate optimization by the extended Ritz method
    • Kůrková, V., Sanguineti, M.: Error estimates for approximate optimization by the extended Ritz method. SIAM J. Optim. 18, 461-487 (2005).
    • (2005) SIAM J. Optim. , vol.18 , pp. 461-487
    • Kůrková, V.1    Sanguineti, M.2
  • 13
    • 58149492837 scopus 로고    scopus 로고
    • Approximation schemes for functional optimization problems
    • Giulini, S., Sanguineti, M.: Approximation schemes for functional optimization problems. J. Optim. Theory Appl. 140, 33-54 (2009).
    • (2009) J. Optim. Theory Appl. , vol.140 , pp. 33-54
    • Giulini, S.1    Sanguineti, M.2
  • 16
    • 0031140389 scopus 로고    scopus 로고
    • Adaptive control using neural networks and approximate models
    • Narendra, K. S., Mukhopadhyay, S.: Adaptive control using neural networks and approximate models. IEEE Trans. Neural Netw. 8, 475-485 (1997).
    • (1997) IEEE Trans. Neural Netw. , vol.8 , pp. 475-485
    • Narendra, K.S.1    Mukhopadhyay, S.2
  • 17
    • 0002678121 scopus 로고
    • Neural net approximation
    • K. Narendra (Ed.), New Haven: Yale University Press
    • Barron, A. R.: Neural net approximation. In: Narendra, K. (ed.) Proc. 7th Yale Workshop on Adaptive and Learning Systems, pp. 69-72. Yale University Press, New Haven (1992).
    • (1992) Proc. 7th Yale Workshop on Adaptive and Learning Systems , pp. 69-72
    • Barron, A.R.1
  • 18
    • 0003085388 scopus 로고
    • Rates of convergence for radial basis functions and neural networks
    • R. J. Mammone (Ed.), London: Chapman and Hall
    • Girosi, F., Anzellotti, G.: Rates of convergence for radial basis functions and neural networks. In: Mammone, R. J. (ed.) Artificial Neural Networks for Speech and Vision, pp. 97-114. Chapman and Hall, London (1993).
    • (1993) Artificial Neural Networks for Speech and Vision , pp. 97-114
    • Girosi, F.1    Anzellotti, G.2
  • 19
    • 0001307541 scopus 로고
    • Degree of approximation results for feedforward networks approximating unknown mappings and their derivatives
    • Hornik, K., Stinchcombe, M., White, H., Auer, P.: Degree of approximation results for feedforward networks approximating unknown mappings and their derivatives. Neural Comput. 6, 1262-1275 (1994).
    • (1994) Neural Comput. , vol.6 , pp. 1262-1275
    • Hornik, K.1    Stinchcombe, M.2    White, H.3    Auer, P.4
  • 20
    • 0000653359 scopus 로고
    • Approximation error bounds that use VC-bounds
    • Paris: EC2 & Cie
    • Girosi, F.: Approximation error bounds that use VC-bounds. In: Proc. Int. Conf. on Artificial Neural Networks. pp. 295-302, EC2 & Cie, Paris (1995).
    • (1995) Proc. Int. Conf. On Artificial Neural Networks , pp. 295-302
    • Girosi, F.1
  • 21
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta Numer. 8, 143-195 (1999).
    • (1999) Acta Numer. , vol.8 , pp. 143-195
    • Pinkus, A.1
  • 22
    • 0036165028 scopus 로고    scopus 로고
    • Comparison of worst-case errors in linear and neural network approximation
    • Kůrková, V., Sanguineti, M.: Comparison of worst-case errors in linear and neural network approximation. IEEE Trans. Inform. Theory 48, 264-275 (2002).
    • (2002) IEEE Trans. Inform. Theory , vol.48 , pp. 264-275
    • Kůrková, V.1    Sanguineti, M.2
  • 23
    • 3242701678 scopus 로고    scopus 로고
    • On the tractability of multivariate integration and approximation by neural networks
    • Mhaskar, H. N.: On the tractability of multivariate integration and approximation by neural networks. J. Complex. 20, 561-590 (2004).
    • (2004) J. Complex. , vol.20 , pp. 561-590
    • Mhaskar, H.N.1
  • 24
    • 56949103612 scopus 로고    scopus 로고
    • Complexity of Gaussian radial basis networks approximating smooth functions
    • Kainen, P. C., Kůrková, V., Sanguineti, M.: Complexity of Gaussian radial basis networks approximating smooth functions. J. Complex. 25, 63-74 (2009).
    • (2009) J. Complex. , vol.25 , pp. 63-74
    • Kainen, P.C.1    Kůrková, V.2    Sanguineti, M.3
  • 25
    • 38049029310 scopus 로고    scopus 로고
    • Estimates of approximation rates by Gaussian radial-basis functions
    • Berlin: Springer
    • Kainen, P. C., Kůrková, V., Sanguineti, M.: Estimates of approximation rates by Gaussian radial-basis functions. In: Lecture Notes in Computer Science, vol. 4432, pp. 11-18. Springer, Berlin (2007).
    • (2007) Lecture Notes in Computer Science , vol.4432 , pp. 11-18
    • Kainen, P.C.1    Kůrková, V.2    Sanguineti, M.3
  • 26
    • 57349097663 scopus 로고    scopus 로고
    • Geometric upper bounds on rates of variable-basis approximation
    • Kůrková, V., Sanguineti, M.: Geometric upper bounds on rates of variable-basis approximation. IEEE Trans. Inform. Theory 54, 5681-5688 (2008).
    • (2008) IEEE Trans. Inform. Theory , vol.54 , pp. 5681-5688
    • Kůrková, V.1    Sanguineti, M.2
  • 27
    • 61349203972 scopus 로고    scopus 로고
    • Approximate minimization of the regularized expected error over kernel models
    • Kůrková, V., Sanguineti, M.: Approximate minimization of the regularized expected error over kernel models. Math. Oper. Res. 33, 747-756 (2008).
    • (2008) Math. Oper. Res. , vol.33 , pp. 747-756
    • Kůrková, V.1    Sanguineti, M.2
  • 28
    • 57649225157 scopus 로고    scopus 로고
    • Alessandri, A., Parisini, T., Sanguineti, M., Zoppoli, R.: Neural strategies for nonlinear optimal filtering. In: Proc. IEEE Int. Conf. Syst. Eng., pp. 44-49, Kobe, Japan, 1992.
  • 29
    • 0003320059 scopus 로고
    • Learning techniques and neural networks for the solution of N-stage nonlinear nonquadratic optimal control problems
    • A. Isidori and T. J. Tarn (Eds.), Boston: Birkhäuser
    • Zoppoli, R., Parisini, T.: Learning techniques and neural networks for the solution of N-stage nonlinear nonquadratic optimal control problems. In: Isidori, A., Tarn, T. J. (eds.) Systems, Models and Feedback: Theory and Applications, pp. 193-210. Birkhäuser, Boston (1992).
    • (1992) Systems, Models and Feedback: Theory and Applications , pp. 193-210
    • Zoppoli, R.1    Parisini, T.2
  • 30
    • 35348954934 scopus 로고    scopus 로고
    • Condition numbers and Ritz type methods in unconstrained optimization
    • Zolezzi, T.: Condition numbers and Ritz type methods in unconstrained optimization. Control Cybern. 36, 811-822 (2007).
    • (2007) Control Cybern. , vol.36 , pp. 811-822
    • Zolezzi, T.1
  • 32
    • 0036506049 scopus 로고    scopus 로고
    • Optimization-based learning with bounded error for feedforward neural networks
    • Alessandri, A., Sanguineti, M., Maggiore, M.: Optimization-based learning with bounded error for feedforward neural networks. IEEE Trans. Neural Netw. 13, 261-273 (2002).
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 261-273
    • Alessandri, A.1    Sanguineti, M.2    Maggiore, M.3
  • 39
    • 0032517948 scopus 로고    scopus 로고
    • Thompson metric, contraction property, and differentiability of policy functions
    • Montrucchio, L.: Thompson metric, contraction property, and differentiability of policy functions. J. Econ. Behav. Organ. 33, 449-466 (1998).
    • (1998) J. Econ. Behav. Organ. , vol.33 , pp. 449-466
    • Montrucchio, L.1
  • 40
    • 77956449917 scopus 로고    scopus 로고
    • Value and policy function approximations in infinite-horizon optimization problems
    • Gnecco, G., Sanguineti, M.: Value and policy function approximations in infinite-horizon optimization problems. J. Dyn. Syst. Geom. Theories 6, 123-147 (2008).
    • (2008) J. Dyn. Syst. Geom. Theories , vol.6 , pp. 123-147
    • Gnecco, G.1    Sanguineti, M.2
  • 43
    • 0033684677 scopus 로고    scopus 로고
    • Giulini, S., Sanguineti, M.: On dimension-independent approximation by neural networks and linear approximators. In: Proc. Int. Joint Conference on Neural Networks, pp. I283-I288 (2000).
  • 44
    • 57649240046 scopus 로고    scopus 로고
    • Approximation error bounds via Rademacher's complexity
    • Gnecco, G., Sanguineti, M.: Approximation error bounds via Rademacher's complexity. Appl. Math. Sci. 2, 153-176 (2008).
    • (2008) Appl. Math. Sci. , vol.2 , pp. 153-176
    • Gnecco, G.1    Sanguineti, M.2
  • 46
    • 61449255581 scopus 로고    scopus 로고
    • Estimates of the approximation error via Rademacher complexity: Learning vector-valued functions
    • 640758
    • Gnecco, G., Sanguineti, M.: Estimates of the approximation error via Rademacher complexity: Learning vector-valued functions. J. Inequal. Appl. 2008, 640758 (2008).
    • (2008) J. Inequal. Appl. , vol.2008
    • Gnecco, G.1    Sanguineti, M.2
  • 50
    • 0035201779 scopus 로고    scopus 로고
    • Error bounds for approximation with neural networks
    • Burger, M., Neubauer, A.: Error bounds for approximation with neural networks. J. Approx. Theory 112, 235-250 (2001).
    • (2001) J. Approx. Theory , vol.112 , pp. 235-250
    • Burger, M.1    Neubauer, A.2
  • 51
    • 0000784179 scopus 로고
    • The once but not twice differentiability of the policy function
    • Araujo, A.: The once but not twice differentiability of the policy function. Econometrica 59, 1383-1393 (1991).
    • (1991) Econometrica , vol.59 , pp. 1383-1393
    • Araujo, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.