-
1
-
-
0028195682
-
What size network is good for generalization of a specific task of interest?
-
Amirakian B., Nishimura H. What size network is good for generalization of a specific task of interest? Neural Networks. 7(2):1994;321-329.
-
(1994)
Neural Networks
, vol.7
, Issue.2
, pp. 321-329
-
-
Amirakian, B.1
Nishimura, H.2
-
2
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems. 2(4):1989;303-314.
-
(1989)
Mathematics of Control, Signals, and Systems
, vol.2
, Issue.4
, pp. 303-314
-
-
Cybenko, G.1
-
3
-
-
0031642343
-
Optimizing the number of hidden nodes of a feedforward artificial neural network
-
Anchorage, USA
-
L. Fletcher, V. Katkovnik, F.E. Steffens, Optimizing the number of hidden nodes of a feedforward artificial neural network, in: Proceedings of the International Joint Conference on Neural Networks, Anchorage, USA, 1998, pp. 1608-1612.
-
(1998)
Proceedings of the International Joint Conference on Neural Networks
, pp. 1608-1612
-
-
Fletcher, L.1
Katkovnik, V.2
Steffens, F.E.3
-
4
-
-
0024866495
-
On the approximate realization of continuous mappings by neural networks
-
Funahashi K. On the approximate realization of continuous mappings by neural networks. Neural Networks. 2(3):1989;183-192.
-
(1989)
Neural Networks
, vol.2
, Issue.3
, pp. 183-192
-
-
Funahashi, K.1
-
6
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks. 2(5):1989;359-366.
-
(1989)
Neural Networks
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
8
-
-
0002582771
-
Principle of information diffusion
-
Huang C.F. Principle of information diffusion. Fuzzy Sets and Systems. 91(1):1997;69-90.
-
(1997)
Fuzzy Sets and Systems
, vol.91
, Issue.1
, pp. 69-90
-
-
Huang, C.F.1
-
9
-
-
0031631583
-
Deriving samples from incomplete data
-
Anchorage, USA
-
C.F. Huang, Deriving samples from incomplete data, in: Proceedings of FUZZ-IEEE'98, Anchorage, USA, 1998, pp. 645-650.
-
(1998)
Proceedings of FUZZ-IEEE'98
, pp. 645-650
-
-
Huang, C.F.1
-
11
-
-
0025792215
-
Bounds on the number of hidden neurons in multilayer perceptrons
-
Huang S.C., Huang Y.F. Bounds on the number of hidden neurons in multilayer perceptrons. IEEE Transactions of Neural Network. 2(1):1991;47-55.
-
(1991)
IEEE Transactions of Neural Network
, vol.2
, Issue.1
, pp. 47-55
-
-
Huang, S.C.1
Huang, Y.F.2
-
12
-
-
0032598066
-
Estimating the relationship between isoseismal area and earthquake magnitude by hybrid fuzzy-neural-network method
-
Huang C.F., Lueng Y. Estimating the relationship between isoseismal area and earthquake magnitude by hybrid fuzzy-neural-network method. Fuzzy Sets and Systems. 107(2):1999;131-146.
-
(1999)
Fuzzy Sets and Systems
, vol.107
, Issue.2
, pp. 131-146
-
-
Huang, C.F.1
Lueng, Y.2
-
13
-
-
0348244675
-
Information diffusion principle and application in fuzzy neuron
-
D. Ruan. Boston: Kluwer Academic Publishers
-
Huang C.F., Ruan D. Information diffusion principle and application in fuzzy neuron. Ruan D. Fuzzy Logic Foundations and Industrial Applications. 1996;165-189 Kluwer Academic Publishers, Boston.
-
(1996)
Fuzzy Logic Foundations and Industrial Applications
, pp. 165-189
-
-
Huang, C.F.1
Ruan, D.2
-
17
-
-
0032072395
-
Robust nonlinear system identification using neural network models
-
Lu S., Basar T. Robust nonlinear system identification using neural network models. IEEE Transactions of Neural Network. 9(3):1998;407-429.
-
(1998)
IEEE Transactions of Neural Network
, vol.9
, Issue.3
, pp. 407-429
-
-
Lu, S.1
Basar, T.2
-
18
-
-
0008261062
-
Neuro-fuzzy modeling of compensating systems
-
P. Sincák, & J. Vascák. Heidelberg: Physica-Verlag
-
Moraga C. Neuro-fuzzy modeling of compensating systems. Sincák P., Vascák J. Quo Vadis Computational Intelligence? 2000;385-398 Physica-Verlag, Heidelberg.
-
(2000)
Quo Vadis Computational Intelligence?
, pp. 385-398
-
-
Moraga, C.1
-
24
-
-
0028292832
-
Minimisation methods for training feedforward networks
-
van der Smagt P.P. Minimisation methods for training feedforward networks. Neural Networks. 7(1):1994;1-11.
-
(1994)
Neural Networks
, vol.7
, Issue.1
, pp. 1-11
-
-
Van der Smagt, P.P.1
-
26
-
-
0028319326
-
A procedure for determining the topology of multilayer feedforward neural networks
-
Wang Z.N., Dimassimo C., Tham M.T., Morris A.J. A procedure for determining the topology of multilayer feedforward neural networks. Neural Networks. 7(2):1994;291-300.
-
(1994)
Neural Networks
, vol.7
, Issue.2
, pp. 291-300
-
-
Wang, Z.N.1
Dimassimo, C.2
Tham, M.T.3
Morris, A.J.4
-
27
-
-
0025635525
-
Connectionist nonparametric regression: Multilayer feedforward network can learn arbitrary mappings
-
White H. Connectionist nonparametric regression: multilayer feedforward network can learn arbitrary mappings. Neural Networks. 3(5):1990;535-549.
-
(1990)
Neural Networks
, vol.3
, Issue.5
, pp. 535-549
-
-
White, H.1
-
28
-
-
0029004155
-
Neural networks, approximation theory, and finite precision computation
-
Wray J., Green G.G.R. Neural networks, approximation theory, and finite precision computation. Neural Networks. 8(1):1995;31-37.
-
(1995)
Neural Networks
, vol.8
, Issue.1
, pp. 31-37
-
-
Wray, J.1
Green, G.G.R.2
-
29
-
-
49349133217
-
Fuzzy sets as a basis for a theory of possibility
-
Zadeh L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems. 1(1):1978;3-28.
-
(1978)
Fuzzy Sets and Systems
, vol.1
, Issue.1
, pp. 3-28
-
-
Zadeh, L.A.1
|