메뉴 건너뛰기




Volumn 33, Issue 6, 2006, Pages 1857-1869

Using mega-fuzzification and data trend estimation in small data set learning for early FMS scheduling knowledge

Author keywords

ANFIS; Data trend; Flexible manufacturing system; Mega fuzzification; Scheduling; Small data set

Indexed keywords

COMPUTER SIMULATION; DATA REDUCTION; FUZZY CONTROL; KNOWLEDGE BASED SYSTEMS; LEARNING SYSTEMS; PROBLEM SOLVING;

EID: 27344432371     PISSN: 03050548     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cor.2004.11.022     Document Type: Article
Times cited : (60)

References (19)
  • 1
    • 0242485227 scopus 로고    scopus 로고
    • Using functional virtual population as assistance to learn scheduling knowledge in dynamic manufacturing environments
    • D.C. Li, L.S. Chen, and Y.S. Lin Using functional virtual population as assistance to learn scheduling knowledge in dynamic manufacturing environments International Journal of Production Research 41 2003 4011 4024
    • (2003) International Journal of Production Research , vol.41 , pp. 4011-4024
    • Li, D.C.1    Chen, L.S.2    Lin, Y.S.3
  • 2
    • 0031246898 scopus 로고    scopus 로고
    • Using an unsupervised neural network and decision tree as knowledge acquisition tools for FMS scheduling
    • D.C. Li, C.S. Wu, and K.Y. Tong Using an unsupervised neural network and decision tree as knowledge acquisition tools for FMS scheduling International Journal of Systems Science 28 1997 977 985
    • (1997) International Journal of Systems Science , vol.28 , pp. 977-985
    • Li, D.C.1    Wu, C.S.2    Tong, K.Y.3
  • 3
    • 0029755591 scopus 로고    scopus 로고
    • A strategy for evolution of algorithms to increase the computational effectiveness of NP-hard scheduling problems
    • D.C. Li, K.L. Han, and K.Y. Tong A strategy for evolution of algorithms to increase the computational effectiveness of NP-hard scheduling problems European Journal of Operational Research 88 1996 404 412
    • (1996) European Journal of Operational Research , vol.88 , pp. 404-412
    • Li, D.C.1    Han, K.L.2    Tong, K.Y.3
  • 4
    • 0001632220 scopus 로고
    • Using unsupervised learning technologies and simulation analysis to induce scheduling knowledge for flexible manufacturing systems
    • D.C. Li, and I.S. She Using unsupervised learning technologies and simulation analysis to induce scheduling knowledge for flexible manufacturing systems International Journal of Production Research 32 1994 2187 2199
    • (1994) International Journal of Production Research , vol.32 , pp. 2187-2199
    • Li, D.C.1    She, I.S.2
  • 6
    • 0000936343 scopus 로고
    • Intelligent scheduling with machine learning capabilities: The induction of scheduling knowledge
    • M.J. Shaw, S. Park, and N. Raman Intelligent scheduling with machine learning capabilities the induction of scheduling knowledge IIE Transactions 24 1992 156 168
    • (1992) IIE Transactions , vol.24 , pp. 156-168
    • Shaw, M.J.1    Park, S.2    Raman, N.3
  • 7
    • 0002899794 scopus 로고    scopus 로고
    • Learning decision tree classifiers
    • J.R. Quinlan Learning decision tree classifiers ACM Computing Surveys 28 1996 71 72
    • (1996) ACM Computing Surveys , vol.28 , pp. 71-72
    • Quinlan, J.R.1
  • 8
    • 0026819312 scopus 로고
    • Dynamic scheduling system utilizing machine learning as a knowledge acquisition tool
    • S. Nakasuka, and T. Yoshida Dynamic scheduling system utilizing machine learning as a knowledge acquisition tool International Journal of Production Research 30 1992 411 431
    • (1992) International Journal of Production Research , vol.30 , pp. 411-431
    • Nakasuka, S.1    Yoshida, T.2
  • 9
    • 0025441492 scopus 로고
    • A simulation and learning technique for generating knowledge about manufacturing systems behavior
    • H. Pierreval, and H. Ralambondrainy A simulation and learning technique for generating knowledge about manufacturing systems behavior Journal of the Operational Research Society 41 1990 461 474
    • (1990) Journal of the Operational Research Society , vol.41 , pp. 461-474
    • Pierreval, H.1    Ralambondrainy, H.2
  • 11
    • 0037143042 scopus 로고    scopus 로고
    • Simulation metamodelling with neural networks: An experimental investigation
    • I. Sabuncuoglu, and S. Touhami Simulation metamodelling with neural networks an experimental investigation International Journal of Production Research 40 2002 2483 2505
    • (2002) International Journal of Production Research , vol.40 , pp. 2483-2505
    • Sabuncuoglu, I.1    Touhami, S.2
  • 12
    • 0030166927 scopus 로고    scopus 로고
    • Identifying attributes for knowledge-based development in dynamic scheduling environments
    • C.C. Chen, and Y. Yih Identifying attributes for knowledge-based development in dynamic scheduling environments International Journal of Production Research 34 1996 1739 1755
    • (1996) International Journal of Production Research , vol.34 , pp. 1739-1755
    • Chen, C.C.1    Yih, Y.2
  • 16
    • 45449126257 scopus 로고
    • Structure identification of fuzzy model
    • M. Sugeno, and G.T. Kang Structure identification of fuzzy model Fuzzy Sets and Systems 28 1988 15 23
    • (1988) Fuzzy Sets and Systems , vol.28 , pp. 15-23
    • Sugeno, M.1    Kang, G.T.2
  • 18
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T. Takagi, and M. Sugeno Fuzzy identification of systems and its applications to modeling and control IEEE Transactions on Systems, Man and Cybernetics 15 1985 116 132
    • (1985) IEEE Transactions on Systems, Man and Cybernetics , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 19
    • 0031101929 scopus 로고    scopus 로고
    • A framework for a gold-driven approach to group technology applications using conceptual clustering
    • M. Srinivasan, and Y.B. Moon A framework for a gold-driven approach to group technology applications using conceptual clustering International Journal of Production Research 35 1997 1759 1773
    • (1997) International Journal of Production Research , vol.35 , pp. 1759-1773
    • Srinivasan, M.1    Moon, Y.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.