메뉴 건너뛰기




Volumn , Issue , 2010, Pages 343-351

Feature selection for support vector regression using probabilistic prediction

Author keywords

Feature ranking; Feature selection; Probabilistic predictions; Random permutation; Support vector regression

Indexed keywords

FEATURE RANKING; FEATURE SELECTION; PROBABILISTIC PREDICTION; RANDOM PERMUTATIONS; SUPPORT VECTOR REGRESSION;

EID: 77956209944     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1835804.1835849     Document Type: Conference Paper
Times cited : (11)

References (25)
  • 4
    • 1242331293 scopus 로고    scopus 로고
    • Bayesian support vector regression using a unified loss function
    • W. Chu, S. S. Keerthi, and C. J. Ong. Bayesian support vector regression using a unified loss function. IEEE Transactions on Neural Networks, 15:29-44, 2004.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , pp. 29-44
    • Chu, W.1    Keerthi, S.S.2    Ong, C.J.3
  • 6
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • J. H. Friedman. Multivariate adaptive regression splines. The Annals of Statistics, 19(1):1-67, 1991.
    • (1991) The Annals of Statistics , vol.19 , Issue.1 , pp. 1-67
    • Friedman, J.H.1
  • 7
    • 0036161010 scopus 로고    scopus 로고
    • A probabilistic framework for SVM regression and error bar estimation
    • J. B. Gao, S. R. Gunn, C. J. Harris, and M. Brown. A probabilistic framework for SVM regression and error bar estimation. Machine Learning, 46(1-3):71-89, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 71-89
    • Gao, J.B.1    Gunn, S.R.2    Harris, C.J.3    Brown, M.4
  • 11
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46(1-3):389-422, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 12
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • chapter In B. Scholkopf, C. Burges and A. Smola (Eds) MIT Press
    • T. Joachims. Making large-Scale SVM Learning Practical., chapter In B. Scholkopf, C. Burges and A. Smola (Eds), Advances in kernel methods: Support Vector Learning. MIT Press, 1998.
    • (1998) Advances in Kernel Methods: Support Vector Learning
    • Joachims, T.1
  • 15
    • 17444378757 scopus 로고    scopus 로고
    • Simple probabilistic predictions for support vector regression
    • National Taiwan University
    • C. J. Lin and R. C. Weng. Simple probabilistic predictions for support vector regression. Technical report, Department of Cmputer Science, National Taiwan University, 2004.
    • (2004) Technical Report, Department of Cmputer Science
    • Lin, C.J.1    Weng, R.C.2
  • 16
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • D. MacKay. The evidence framework applied to classification networks. Neural Computation, 4(5):720-736, 1992.
    • (1992) Neural Computation , vol.4 , Issue.5 , pp. 720-736
    • MacKay, D.1
  • 17
    • 75149170055 scopus 로고    scopus 로고
    • Nearest neighbor based feature selection for regression and its application to neural activity
    • Y. Weiss, B. Schölkopf, and J. Platt, editors Cambridge, MA MIT Press
    • A. Navot, L. Shpigelman, N. Tishby, and E. Vaadia. Nearest neighbor based feature selection for regression and its application to neural activity. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems 18, pages 995-1002, Cambridge, MA, 2006. MIT Press.
    • (2006) Advances in Neural Information Processing Systems , vol.18 , pp. 995-1002
    • Navot, A.1    Shpigelman, L.2    Tishby, N.3    Vaadia, E.4
  • 19
    • 0001171722 scopus 로고    scopus 로고
    • Using sparseness and analytic QP to speed training of support vector machines
    • Chapter In M.S. Kearns, S.A. Solla and D. A. Cohn (Eds) Cambridge, MIT Press
    • J. C. Platt. Using sparseness and analytic QP to speed training of support vector machines, chapter In M.S. Kearns, S.A. Solla and D. A. Cohn (Eds), Advances in Neural Information Processing Systems, 11. Cambridge, MIT Press, 1998.
    • (1998) Advances in Neural Information Processing Systems , vol.11
    • Platt, J.C.1
  • 21
    • 36849082989 scopus 로고    scopus 로고
    • Feature selection via sensitivity analysis of SVM probabilistic outputs
    • K. Q. Shen, C. J. Ong, X. P. Li, and E. P. Wilder-Smith. Feature selection via sensitivity analysis of SVM probabilistic outputs. Machine Learning, 70(1):1-20, 2008.
    • (2008) Machine Learning , vol.70 , Issue.1 , pp. 1-20
    • Shen, K.Q.1    Ong, C.J.2    Li, X.P.3    Wilder-Smith, E.P.4
  • 23
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Series B
    • R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B, 58(1):267-288, 1996.
    • (1996) Journal of the Royal Statistical Society , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 25
    • 72149094052 scopus 로고    scopus 로고
    • Feature selection for mlp neural network: The use of random permutation of probabilistic outputs
    • December
    • J. B. Yang, K. Q. Shen, C. J. Ong, and X. P. Li. Feature selection for mlp neural network: The use of random permutation of probabilistic outputs. IEEE Transactions on Neural Network, 20(12):1911 - 1922, December 2009.
    • (2009) IEEE Transactions on Neural Network , vol.20 , Issue.12 , pp. 1911-1922
    • Yang, J.B.1    Shen, K.Q.2    Ong, C.J.3    Li, X.P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.