-
6
-
-
0002432565
-
Multivariate adaptive regression splines
-
J. H. Friedman. Multivariate adaptive regression splines. The Annals of Statistics, 19(1):1-67, 1991.
-
(1991)
The Annals of Statistics
, vol.19
, Issue.1
, pp. 1-67
-
-
Friedman, J.H.1
-
7
-
-
0036161010
-
A probabilistic framework for SVM regression and error bar estimation
-
J. B. Gao, S. R. Gunn, C. J. Harris, and M. Brown. A probabilistic framework for SVM regression and error bar estimation. Machine Learning, 46(1-3):71-89, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 71-89
-
-
Gao, J.B.1
Gunn, S.R.2
Harris, C.J.3
Brown, M.4
-
8
-
-
33847048187
-
Variable selection for support vector machine based multisensor systems
-
March
-
O. Gualdrón, J. Brezmes, E. Llobet, A. Amari, X. Vilanova, B. Bouchikhi, and X. Correig. Variable selection for support vector machine based multisensor systems. Sensors and Actuators B: Chemical, 122:259-268, March 2007.
-
(2007)
Sensors and Actuators B: Chemical
, vol.122
, pp. 259-268
-
-
Gualdrón, O.1
Brezmes, J.2
Llobet, E.3
Amari, A.4
Vilanova, X.5
Bouchikhi, B.6
Correig, X.7
-
10
-
-
33745891586
-
-
I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors Springer Verlag, August
-
I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors. Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing). Springer Verlag, August 2006.
-
(2006)
Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing)
-
-
-
11
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46(1-3):389-422, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
12
-
-
0002714543
-
Making large-scale SVM learning practical
-
chapter In B. Scholkopf, C. Burges and A. Smola (Eds) MIT Press
-
T. Joachims. Making large-Scale SVM Learning Practical., chapter In B. Scholkopf, C. Burges and A. Smola (Eds), Advances in kernel methods: Support Vector Learning. MIT Press, 1998.
-
(1998)
Advances in Kernel Methods: Support Vector Learning
-
-
Joachims, T.1
-
15
-
-
17444378757
-
Simple probabilistic predictions for support vector regression
-
National Taiwan University
-
C. J. Lin and R. C. Weng. Simple probabilistic predictions for support vector regression. Technical report, Department of Cmputer Science, National Taiwan University, 2004.
-
(2004)
Technical Report, Department of Cmputer Science
-
-
Lin, C.J.1
Weng, R.C.2
-
16
-
-
0000234257
-
The evidence framework applied to classification networks
-
D. MacKay. The evidence framework applied to classification networks. Neural Computation, 4(5):720-736, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.5
, pp. 720-736
-
-
MacKay, D.1
-
17
-
-
75149170055
-
Nearest neighbor based feature selection for regression and its application to neural activity
-
Y. Weiss, B. Schölkopf, and J. Platt, editors Cambridge, MA MIT Press
-
A. Navot, L. Shpigelman, N. Tishby, and E. Vaadia. Nearest neighbor based feature selection for regression and its application to neural activity. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems 18, pages 995-1002, Cambridge, MA, 2006. MIT Press.
-
(2006)
Advances in Neural Information Processing Systems
, vol.18
, pp. 995-1002
-
-
Navot, A.1
Shpigelman, L.2
Tishby, N.3
Vaadia, E.4
-
18
-
-
14344249889
-
Feature selection, l1 vs. l2 regularization, and rotational invariance
-
New York, NY, USA ACM
-
A. Y. Ng. Feature selection, l1 vs. l2 regularization, and rotational invariance. In ICML '04: Proceedings of the twenty-first International Conference on Machine learning, pages 78-85, New York, NY, USA, 2004. ACM.
-
(2004)
ICML '04: Proceedings of the Twenty-First International Conference on Machine Learning
, pp. 78-85
-
-
Ng, A.Y.1
-
19
-
-
0001171722
-
Using sparseness and analytic QP to speed training of support vector machines
-
Chapter In M.S. Kearns, S.A. Solla and D. A. Cohn (Eds) Cambridge, MIT Press
-
J. C. Platt. Using sparseness and analytic QP to speed training of support vector machines, chapter In M.S. Kearns, S.A. Solla and D. A. Cohn (Eds), Advances in Neural Information Processing Systems, 11. Cambridge, MIT Press, 1998.
-
(1998)
Advances in Neural Information Processing Systems
, vol.11
-
-
Platt, J.C.1
-
21
-
-
36849082989
-
Feature selection via sensitivity analysis of SVM probabilistic outputs
-
K. Q. Shen, C. J. Ong, X. P. Li, and E. P. Wilder-Smith. Feature selection via sensitivity analysis of SVM probabilistic outputs. Machine Learning, 70(1):1-20, 2008.
-
(2008)
Machine Learning
, vol.70
, Issue.1
, pp. 1-20
-
-
Shen, K.Q.1
Ong, C.J.2
Li, X.P.3
Wilder-Smith, E.P.4
-
22
-
-
34547964410
-
Supervised feature selection via dependence estimation
-
New York, NY, USA ACM
-
L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt. Supervised feature selection via dependence estimation. In ICML '07: Proceedings of the 24th international conference on Machine learning, pages 823-830, New York, NY, USA, 2007. ACM.
-
(2007)
ICML '07: Proceedings of the 24th International Conference on Machine Learning
, pp. 823-830
-
-
Song, L.1
Smola, A.2
Gretton, A.3
Bedo, J.4
Borgwardt, K.5
-
23
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
Series B
-
R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B, 58(1):267-288, 1996.
-
(1996)
Journal of the Royal Statistical Society
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
25
-
-
72149094052
-
Feature selection for mlp neural network: The use of random permutation of probabilistic outputs
-
December
-
J. B. Yang, K. Q. Shen, C. J. Ong, and X. P. Li. Feature selection for mlp neural network: The use of random permutation of probabilistic outputs. IEEE Transactions on Neural Network, 20(12):1911 - 1922, December 2009.
-
(2009)
IEEE Transactions on Neural Network
, vol.20
, Issue.12
, pp. 1911-1922
-
-
Yang, J.B.1
Shen, K.Q.2
Ong, C.J.3
Li, X.P.4
|