메뉴 건너뛰기




Volumn 31, Issue 13, 2010, Pages 1944-1951

Sparse learning for support vector classification

Author keywords

Implementations of L0 norm; Kernel methods; Regularization term; Sparse representation; Support vector machine

Indexed keywords

AUTOMATICALLY SETTING; BENCHMARK DATASETS; EXPERIMENTAL EVALUATION; FLEXIBLE FRAMEWORK; IMPLEMENTATIONS OF L0-NORM; KERNEL METHODS; REGULARIZATION TERM; SPARSE REPRESENTATION; SPARSE SOLUTIONS; SUPPORT VECTOR; SUPPORT VECTOR CLASSIFICATION; SYNTHETIC DATASETS; ZERO NORMS;

EID: 77956063682     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2010.06.017     Document Type: Article
Times cited : (72)

References (26)
  • 2
    • 0002400882 scopus 로고    scopus 로고
    • Simplified support vector decision rules
    • Morgan Kaufmann San Mateo, CA
    • C.J.C. Burges Simplified support vector decision rules Proc. 13th Internat. Conf. Machine Learning 1996 Morgan Kaufmann San Mateo, CA 71 77
    • (1996) Proc. 13th Internat. Conf. Machine Learning , pp. 71-77
    • Burges, C.J.C.1
  • 3
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J.C. Burges A tutorial on support vector machines for pattern recognition Data Min. Knowl. Disc. 2 1998 121 167
    • (1998) Data Min. Knowl. Disc. , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 4
    • 0001260194 scopus 로고    scopus 로고
    • Exact simplification of support vector solutions
    • T. Downs, K.E. Gates, and A. Masters Exact simplification of support vector solutions J. Machine Learn. Res. 2 2002 293 297
    • (2002) J. Machine Learn. Res. , vol.2 , pp. 293-297
    • Downs, T.1    Gates, K.E.2    Masters, A.3
  • 5
    • 0035200758 scopus 로고    scopus 로고
    • A new method for sparsity control in support vector classification and regression
    • P.M.L. Drezet, and R.F. Harrison A new method for sparsity control in support vector classification and regression Pattern Recognition 34 2001 111 125
    • (2001) Pattern Recognition , vol.34 , pp. 111-125
    • Drezet, P.M.L.1    Harrison, R.F.2
  • 10
    • 40549124666 scopus 로고    scopus 로고
    • Maxi-min margin machine: Learning large margin classifiers globally and locally
    • K. Huang, H. Yang, I. King, and M.R. Lyu Maxi-min margin machine: learning large margin classifiers globally and locally IEEE Trans. Neural Networks 19 2008 260 272
    • (2008) IEEE Trans. Neural Networks , vol.19 , pp. 260-272
    • Huang, K.1    Yang, H.2    King, I.3    Lyu, M.R.4
  • 14
    • 35549011976 scopus 로고    scopus 로고
    • Simplify support vector machines by iterative learning
    • Y. Li, and W. Zhang Simplify support vector machines by iterative learning Neural Inform. Process. Lett. Rev. 10 2006 11 17
    • (2006) Neural Inform. Process. Lett. Rev. , vol.10 , pp. 11-17
    • Li, Y.1    Zhang, W.2
  • 15
    • 31844434496 scopus 로고    scopus 로고
    • An efficient method for simplifying support vector machines
    • Bonn, Germany
    • Nguyen, D.D., Ho, T.B., 2005. An efficient method for simplifying support vector machines. In: Proc. 22th Internat. Conf. Machine Learning, Bonn, Germany, pp. 617-624.
    • (2005) Proc. 22th Internat. Conf. Machine Learning , pp. 617-624
    • Nguyen, D.D.1    Ho, T.B.2
  • 19
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A.J. Smola, and B. Schölkopf A tutorial on support vector regression Statist. Comput. 14 2004 199 222
    • (2004) Statist. Comput. , vol.14 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 21
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M.E. Tipping Sparse Bayesian learning and the relevance vector machine J. Machine Learn. Res. 1 2001 211 244
    • (2001) J. Machine Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 24
    • 84898937307 scopus 로고    scopus 로고
    • Support vector method for multivariate density estimation
    • Denver, Colorado, USA
    • Vapnik, V., Mukherjee, S., 1999. Support vector method for multivariate density estimation. In: Advances in Neural Information Processing System, vol. 11, Denver, Colorado, USA, pp. 659-665.
    • (1999) Advances in Neural Information Processing System , vol.11 , pp. 659-665
    • Vapnik, V.1    Mukherjee, S.2
  • 26
    • 33745218747 scopus 로고    scopus 로고
    • Training sparse MS-SVR with an expectation-maximization algorithm
    • D.N. Zheng, J.X. Wang, and Y.N. Zhao Training sparse MS-SVR with an expectation-maximization algorithm Neurocomputing 69 2006 1659 1664
    • (2006) Neurocomputing , vol.69 , pp. 1659-1664
    • Zheng, D.N.1    Wang, J.X.2    Zhao, Y.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.