메뉴 건너뛰기




Volumn 69, Issue 13-15, 2006, Pages 1659-1664

Training sparse MS-SVR with an expectation-maximization algorithm

Author keywords

Expectation maximization (EM) algorithm; Hierarchical Bayes model; Maximum a posteriori (MAP) estimation; Multi scale support vector regression (MS SVR)

Indexed keywords

MATHEMATICAL MODELS; OPTIMIZATION; QUADRATIC PROGRAMMING;

EID: 33745218747     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2006.02.002     Document Type: Article
Times cited : (7)

References (12)
  • 4
    • 0000249788 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and support vector machines
    • Girosi F. An equivalence between sparse approximation and support vector machines. Neural Comput. 10 6 (1998) 1445-1480
    • (1998) Neural Comput. , vol.10 , Issue.6 , pp. 1445-1480
    • Girosi, F.1
  • 9
    • 33745218173 scopus 로고    scopus 로고
    • J.A.K. Suykens, L. Lukas, P.V. Dooren, B.D. Moor, J. Vandewalle, Least squares support vector machine classifiers: a large scale algorithm, European Conference on Circuit Theory and Design, August 29-September 2, 1999, Stresa, Italy, pp. 839-842.
  • 11
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1 (2001) 211-244
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 12
    • 33750379440 scopus 로고    scopus 로고
    • D.N. Zheng, J.X. Wang, Y.N. Zhao, Non-flat function estimation with a multi-scale support vector regression, Neurocomputing, in press, doi:10.1016/j.neucom.2005.12.128.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.