메뉴 건너뛰기




Volumn , Issue , 2010, Pages 2313-2319

Use bin-ratio information for category and scene classification

Author keywords

[No Author keywords available]

Indexed keywords

BAG OF WORDS; CATEGORY CLASSIFICATION; CO-OCCURRENCE; DATA SETS; DISSIMILARITY MEASURES; EXCELLENT PERFORMANCE; PARTIAL OCCLUSIONS; SCENE CLASSIFICATION;

EID: 77956001933     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2010.5539917     Document Type: Conference Paper
Times cited : (50)

References (37)
  • 1
    • 51449103133 scopus 로고    scopus 로고
    • Hyperfeatures - Multilevel local coding for visual recognition
    • 2
    • A. Agarwal and B. Triggs. Hyperfeatures - multilevel local coding for visual recognition. INRIA research report RR-5655, 2006. 2
    • (2006) INRIA Research Report RR-5655
    • Agarwal, A.1    Triggs, B.2
  • 2
    • 24644502276 scopus 로고    scopus 로고
    • Shape Matching and Object Recognition Using Low Distortion Correspondences
    • 2, 3
    • A. Berg, T. Berg, and J. Malik. Shape Matching and Object Recognition Using Low Distortion Correspondences. CVPR, 2005. 2, 3
    • (2005) CVPR
    • Berg, A.1    Berg, T.2    Malik, J.3
  • 3
    • 49749152430 scopus 로고    scopus 로고
    • Efficient kernel discriminant analysis via spectral regression
    • 5
    • D. Cai, X. He and J. Han. Efficient kernel discriminant analysis via spectral regression. ICDM, 2007. 5
    • (2007) ICDM
    • Cai, D.1    He, X.2    Han, J.3
  • 6
    • 70450161264 scopus 로고    scopus 로고
    • A tensor-based algorithm for high-order graph matching
    • 3
    • O. Duchenne, F. Bach, I. Kweon and J. Ponce. A tensor-based algorithm for high-order graph matching. CVPR, 2009. 3
    • (2009) CVPR
    • Duchenne, O.1    Bach, F.2    Kweon, I.3    Ponce, J.4
  • 9
    • 33745155436 scopus 로고    scopus 로고
    • A bayesian hierarchical model for learning natural scene categories
    • 1, 2, 4
    • L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene categories. CVPR, 2005. 1, 2, 4
    • (2005) CVPR
    • Fei-Fei, L.1    Perona, P.2
  • 10
    • 85067032737 scopus 로고    scopus 로고
    • On Feature Combination for Multiclass Object Classification
    • 4
    • P. Gehler and S. Nowozin. On Feature Combination for Multiclass Object Classification. ICCV, 2009. 4
    • (2009) ICCV
    • Gehler, P.1    Nowozin, S.2
  • 12
    • 0029342765 scopus 로고
    • Efficient color histogram indexing for quadratic form distance functions
    • 2
    • J. Hafner, H. Sawhney, W. Equitz, M. Flickner and W. Niblack. Efficient color histogram indexing for quadratic form distance functions. PAMI, 1995. 2
    • (1995) PAMI
    • Hafner, J.1    Sawhney, H.2    Equitz, W.3    Flickner, M.4    Niblack, W.5
  • 14
    • 0030661297 scopus 로고    scopus 로고
    • Robust Classification of Arbitrary Object Classes Based on Hierarchical Spatial Feature-Matching
    • 2
    • G. Lang and P. Seitz. Robust Classification of Arbitrary Object Classes Based on Hierarchical Spatial Feature-Matching. Machine Vision and Applications, 10(3):123 - 135, 1997. 2
    • (1997) Machine Vision and Applications , vol.10 , Issue.3 , pp. 123-135
    • Lang, G.1    Seitz, P.2
  • 15
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • 2, 4
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. CVPR, 2006. 2, 4
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 16
    • 33745886518 scopus 로고    scopus 로고
    • A spectral technique for correspondence problems using pairwise constraints
    • 3
    • M. Leordeanu and M. Hebert. A spectral technique for correspondence problems using pairwise constraints. ICCV, 2005. 3
    • (2005) ICCV
    • Leordeanu, M.1    Hebert, M.2
  • 17
    • 51949089418 scopus 로고    scopus 로고
    • One step beyond histograms: Image representation using Markov stationary features
    • 2, 3
    • J. Li, W. Wu, T. Wang and Y. Zhang. One step beyond histograms: Image representation using Markov stationary features. CVPR, 2008. 2, 3
    • (2008) CVPR
    • Li, J.1    Wu, W.2    Wang, T.3    Zhang, Y.4
  • 18
    • 33845589304 scopus 로고    scopus 로고
    • Diffusion distance for histogram comparison
    • 2
    • H. Ling and K. Okada. Diffusion distance for histogram comparison. CVPR, 2006. 2
    • (2006) CVPR
    • Ling, H.1    Okada, K.2
  • 19
    • 50949105782 scopus 로고    scopus 로고
    • Proximity distribution kernels for geometric context in category recognition
    • 2, 6
    • H. Ling and S. Soatto. Proximity distribution kernels for geometric context in category recognition. ICCV, 2007. 2, 6
    • (2007) ICCV
    • Ling, H.1    Soatto, S.2
  • 20
    • 51949098112 scopus 로고    scopus 로고
    • Classification using Intersection Kernel Support Vector Machines is Efficient
    • 2
    • S. Maji, A.C. Berg and J. Malik. Classification using Intersection Kernel Support Vector Machines is Efficient. CVPR, 2008. 2
    • (2008) CVPR
    • Maji, S.1    Berg, A.C.2    Malik, J.3
  • 22
    • 33845570201 scopus 로고    scopus 로고
    • A visual vocabulary for flower classification
    • 2, 4, 6, 7
    • M.-E. Nilsback and A. Zisserman. A visual vocabulary for flower classification. CVPR, 2006. 2, 4, 6, 7
    • (2006) CVPR
    • Nilsback, M.-E.1    Zisserman, A.2
  • 23
    • 65249121810 scopus 로고    scopus 로고
    • Automated flower classification over a large number of classes
    • 2, 7
    • M.-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. ICVGIP, 2008. 2, 7
    • (2008) ICVGIP
    • Nilsback, M.-E.1    Zisserman, A.2
  • 24
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • 4
    • A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. IJCV, 2001. 4
    • (2001) IJCV
    • Oliva, A.1    Torralba, A.2
  • 26
    • 0030678780 scopus 로고    scopus 로고
    • Non-parametric similarity measures for unsupervised texture segmentation and image retrieval
    • 2
    • J. Puzicha, T. Hofmann, and J. Buhmann. Non-parametric similarity measures for unsupervised texture segmentation and image retrieval. CVPR, 1997. 2
    • (1997) CVPR
    • Puzicha, J.1    Hofmann, T.2    Buhmann, J.3
  • 27
    • 0034313871 scopus 로고    scopus 로고
    • The Earth Mover's distance as a metric for image retrieval
    • 1, 2
    • Y. Rubner, C. Tomasi, and L.J. Guibas. The Earth Mover's distance as a metric for image retrieval. IJCV, 2000. 1, 2
    • (2000) IJCV
    • Rubner, Y.1    Tomasi, C.2    Guibas, L.J.3
  • 28
    • 33845569004 scopus 로고    scopus 로고
    • Discriminative Object Class Models of Appearance and Shape by Correlatons
    • 2
    • S. Savarese, J. M. Winn, and A. Criminisi. Discriminative Object Class Models of Appearance and Shape by Correlatons. CVPR, 2006. 2
    • (2006) CVPR
    • Savarese, S.1    Winn, J.M.2    Criminisi, A.3
  • 29
    • 77955426203 scopus 로고    scopus 로고
    • Evaluation of color descriptors for object and scene recognition
    • 5
    • K.E.A. van de Sande, T. Gevers and C.G.M. Snoek. Evaluation of color descriptors for object and scene recognition. PAMI, 2010. 5
    • (2010) PAMI
    • Van De Sande, K.E.A.1    Gevers, T.2    Snoek, C.G.M.3
  • 30
    • 1042266031 scopus 로고    scopus 로고
    • Weakly supervised learning of visual models and its application to content-based retrieval
    • 2
    • C. Schmid.Weakly supervised learning of visual models and its application to content-based retrieval. IJCV, 2004. 2
    • (2004) IJCV
    • Schmid, C.1
  • 33
    • 50649115912 scopus 로고    scopus 로고
    • Learning the discriminative power invariance trade-off
    • 2, 7
    • M. Varma and D. Ray. Learning the discriminative power invariance trade-off. ICCV, 2007. 2, 7
    • (2007) ICCV
    • Varma, M.1    Ray, D.2
  • 35
    • 70450164332 scopus 로고    scopus 로고
    • Bundling features for large-scale partial-duplicate web image search
    • 2
    • Z.Wu, Q. Ke, M. Isard and J. Sun. Bundling features for large-scale partial-duplicate web image search. CVPR, 2009. 2
    • (2009) CVPR
    • Wu, Z.1    Ke, Q.2    Isard, M.3    Sun, J.4
  • 36
    • 77953226691 scopus 로고    scopus 로고
    • Beyond the Euclidean distance: Creating effective visual codebooks using the histogram intersection kernel
    • 2
    • J. Wu and J.M. Rehg. Beyond the Euclidean distance: Creating effective visual codebooks using the histogram intersection kernel. ICCV, 2009. 2
    • (2009) ICCV
    • Wu, J.1    Rehg, J.M.2
  • 37
    • 33846580425 scopus 로고    scopus 로고
    • Local features and kernels for classification of texture and object categories: A comprehensive study
    • 1, 2, 4, 6
    • J. Zhang, M. Marszalek, S. Lazebnik and C. Schmid. Local features and kernels for classification of texture and object categories: A comprehensive study. IJCV, 2007. 1, 2, 4, 6
    • (2007) IJCV
    • Zhang, J.1    Marszalek, M.2    Lazebnik, S.3    Schmid, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.