메뉴 건너뛰기




Volumn , Issue , 2009, Pages 630-637

Beyond the Euclidean distance: Creating effective visual codebooks using the histogram intersection kernel

Author keywords

[No Author keywords available]

Indexed keywords

BAG-OF-VISUAL-WORDS; BENCHMARK DATASETS; CLUSTER FEATURE; CODE-WORDS; CODEBOOK GENERATION; CODEBOOKS; DESCRIPTORS; EUCLIDEAN DISTANCE; GAUSSIAN MIXTURE MODEL; HISTOGRAM FEATURES; HISTOGRAM INTERSECTION; IMAGE MEASUREMENTS; K-MEANS; K-MEDIAN CLUSTERING; KERNEL K-MEANS; ONE CLASS-SVM; RECOGNITION ACCURACY; SCENE RECOGNITION; STATE-OF-THE-ART PERFORMANCE;

EID: 77953226691     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2009.5459178     Document Type: Conference Paper
Times cited : (246)

References (36)
  • 1
    • 40449097466 scopus 로고    scopus 로고
    • Multilevel image coding with hyperfeatures
    • A. Agarwal and B. Triggs. Multilevel image coding with hyperfeatures. IJCV, 78(1):15-27, 2008.
    • (2008) IJCV , vol.78 , Issue.1 , pp. 15-27
    • Agarwal, A.1    Triggs, B.2
  • 3
    • 51949090223 scopus 로고    scopus 로고
    • In defense of nearest-neighbor based image classification
    • O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor based image classification. In CVPR, 2008.
    • (2008) CVPR
    • Boiman, O.1    Shechtman, E.2    Irani, M.3
  • 4
    • 50649101132 scopus 로고    scopus 로고
    • Image classification using random forests and ferns
    • A. Bosch, X. Muñoz, and A. Zisserman. Image classification using random forests and ferns. In ICCV, 2007.
    • (2007) ICCV
    • Bosch, A.1    Muñoz, X.2    Zisserman, A.3
  • 7
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, volume 1, pages 886-893, 2005.
    • (2005) CVPR , vol.1 , pp. 886-893
    • Dalal, N.1    Triggs, B.2
  • 8
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar. Statistical comparisons of classifiers over multiple data sets. JMLR, 7:1-30, 2006. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 10
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training example: An incremental bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training example: an incremental bayesian approach tested on 101 object categories. In CVPR 2004, Workshop on Generative-Model Based Vision, 2004.
    • CVPR 2004, Workshop on Generative-Model Based Vision, 2004
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 11
    • 77953180556 scopus 로고    scopus 로고
    • Software available at
    • C.-W. Hsu and C.-J. Lin. BSVM, 2006. Software available at http://www.csie.ntu.edu.tw/~cjlin/bsvm.
    • (2006) BSVM
    • Hsu, C.-W.1    Lin, C.-J.2
  • 12
    • 33745934686 scopus 로고    scopus 로고
    • Creating efficient codebooks for visual recognition
    • F. Jurie and B. Triggs. Creating efficient codebooks for visual recognition. In ICCV, volume 1, pages 604-610, 2005.
    • (2005) ICCV , vol.1 , pp. 604-610
    • Jurie, F.1    Triggs, B.2
  • 13
    • 67349266616 scopus 로고    scopus 로고
    • Supervised learning of quantizer codebooks by information loss minimization
    • S. Lazebnik and M. Raginsky. Supervised learning of quantizer codebooks by information loss minimization. IEEE TPAMI, 31(7):1294-1309, 2009.
    • (2009) IEEE TPAMI , vol.31 , Issue.7 , pp. 1294-1309
    • Lazebnik, S.1    Raginsky, M.2
  • 14
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, volume II, pages 2169-2178, 2006.
    • (2006) CVPR , vol.2 , pp. 2169-2178
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 15
    • 50649103674 scopus 로고    scopus 로고
    • What, where and who? Classifying events by scene and object recognition
    • L.-J. Li and L. Fei-Fei. What, where and who? Classifying events by scene and object recognition. In ICCV, 2007.
    • (2007) ICCV
    • Li, L.-J.1    Fei-Fei, L.2
  • 16
    • 50649105931 scopus 로고    scopus 로고
    • Scene modeling using Co-Clustering
    • J. Liu and M. Shah. Scene modeling using Co-Clustering. In ICCV, 2007.
    • (2007) ICCV
    • Liu, J.1    Shah, M.2
  • 17
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 18
    • 51949098112 scopus 로고    scopus 로고
    • Classification using intersection kernel support vector machines is efficient
    • S. Maji, A. C. Berg, and J. Malik. Classification using intersection kernel support vector machines is efficient. In CVPR, 2008.
    • (2008) CVPR
    • Maji, S.1    Berg, A.C.2    Malik, J.3
  • 19
    • 48049095024 scopus 로고    scopus 로고
    • Randomized clustering forests for image classification
    • F. Moosmann, E. Nowak, and F. Jurie. Randomized clustering forests for image classification. IEEE TPAMI, 30(9):1632-1646, 2008.
    • (2008) IEEE TPAMI , vol.30 , Issue.9 , pp. 1632-1646
    • Moosmann, F.1    Nowak, E.2    Jurie, F.3
  • 20
    • 33845592987 scopus 로고    scopus 로고
    • Scalable recognition with a vocabulary tree
    • D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree. In CVPR, volume 2, pages 2161-2168, 2006.
    • (2006) CVPR , vol.2 , pp. 2161-2168
    • Nistér, D.1    Stewénius, H.2
  • 21
    • 13244273801 scopus 로고    scopus 로고
    • Building kernels from binary strings for image matching
    • F. Odone, A. Barla, and A. Verri. Building kernels from binary strings for image matching. IEEE Trans. Image Processing, 14(2):169-180, 2005.
    • (2005) IEEE Trans. Image Processing , vol.14 , Issue.2 , pp. 169-180
    • Odone, F.1    Barla, A.2    Verri, A.3
  • 22
    • 45349097640 scopus 로고    scopus 로고
    • Universal and adapted vocabularies for generic visual categorization
    • F. Perronnin. Universal and adapted vocabularies for generic visual categorization. IEEE TPAMI, 30(7):1243-1256, 2008.
    • (2008) IEEE TPAMI , vol.30 , Issue.7 , pp. 1243-1256
    • Perronnin, F.1
  • 23
    • 51949105132 scopus 로고    scopus 로고
    • Lost in quantization: Improving particular object retrieval in large scale image databases
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quantization: Improving particular object retrieval in large scale image databases. In CVPR, 2008.
    • (2008) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 25
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299-1319, 1998. (Pubitemid 128463674)
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 26
    • 0345414182 scopus 로고    scopus 로고
    • Video Google: A text retrieval approach to object matching in videos
    • J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in videos. In ICCV, volume 2, pages 1470-1477, 2003.
    • (2003) ICCV , vol.2 , pp. 1470-1477
    • Sivic, J.1    Zisserman, A.2
  • 27
    • 0026246210 scopus 로고
    • Color indexing
    • M. J. Swain and D. H. Ballard. Color indexing. IJCV, 7(1):11-32, 1991.
    • (1991) IJCV , vol.7 , Issue.1 , pp. 11-32
    • Swain, M.J.1    Ballard, D.H.2
  • 28
    • 50649101051 scopus 로고    scopus 로고
    • Vector quantizing feature space with a regular lattice
    • T. Tuytelaars and C. Schmid. Vector quantizing feature space with a regular lattice. In ICCV, 2007.
    • (2007) ICCV
    • Tuytelaars, T.1    Schmid, C.2
  • 30
    • 50649115912 scopus 로고    scopus 로고
    • Learning the discriminative power-invariance trade-off
    • M. Varma and D. Ray. Learning the discriminative power-invariance trade-off. In ICCV, 2007.
    • (2007) ICCV
    • Varma, M.1    Ray, D.2
  • 31
    • 33846249578 scopus 로고    scopus 로고
    • Semantic modeling of natural scenes for content-based image retrieval
    • J. Vogel and B. Schiele. Semantic modeling of natural scenes for content-based image retrieval. IJCV, 72(2):133-157, 2007.
    • (2007) IJCV , vol.72 , Issue.2 , pp. 133-157
    • Vogel, J.1    Schiele, B.2
  • 32
    • 84858779327 scopus 로고    scopus 로고
    • Spectral hashing
    • Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In NIPS 21, pages 1753-1760, 2009.
    • (2009) NIPS , vol.21 , pp. 1753-1760
    • Weiss, Y.1    Torralba, A.2    Fergus, R.3
  • 33
    • 33745913325 scopus 로고    scopus 로고
    • Object categorization by learned universal visual dictionary
    • J. Winn, A. Criminisi, and T. Minka. Object categorization by learned universal visual dictionary. In ICCV, volume 2, pages 1800-1807, 2005.
    • (2005) ICCV , vol.2 , pp. 1800-1807
    • Winn, J.1    Criminisi, A.2    Minka, T.3
  • 34
    • 51949085938 scopus 로고    scopus 로고
    • Where am I: Place instance and category recognition using spatial PACT
    • J. Wu and J. M. Rehg. Where am I: Place instance and category recognition using spatial PACT. In CVPR, 2008.
    • (2008) CVPR
    • Wu, J.1    Rehg, J.M.2
  • 36
    • 51949103737 scopus 로고    scopus 로고
    • Unifying discriminative visual codebook generation with classifier training for object category recognition
    • L. Yang, R. Jin, R. Sukthankar, and F. Jurie. Unifying discriminative visual codebook generation with classifier training for object category recognition. In CVPR, 2008.
    • (2008) CVPR
    • Yang, L.1    Jin, R.2    Sukthankar, R.3    Jurie, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.