메뉴 건너뛰기




Volumn , Issue , 2010, Pages 195-202

The application of Michigan-style learning classifier systems to address genetic heterogeneity and epistasis in association studies

Author keywords

Epistasis; Gene Association Study; Genetic Algorithm; Genetic Heterogeneity; GeneticsBased Machine Learning; Learning Classifier System; MCS; SNP; UCS; XCS

Indexed keywords

EPISTASIS; GENETIC HETEROGENEITIES; GENETICS BASED MACHINE LEARNING; LEARNING CLASSIFIER SYSTEM; MCS; SNP; UCS; XCS;

EID: 77955890117     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1830483.1830518     Document Type: Conference Paper
Times cited : (39)

References (39)
  • 1
    • 38049134672 scopus 로고    scopus 로고
    • Data mining in learning classifier systems: Comparing XCS with G Assist
    • J. Bacardit andM. Butz. Data mining in learning classifier systems: Comparing XCS with G Assist. Lecture Notes in Computer Science, 4399:282, 2007.
    • (2007) Lecture Notes in Computer Science , vol.4399 , pp. 282
    • Bacardit, J.1    Butz, M.2
  • 4
    • 0043284115 scopus 로고    scopus 로고
    • Accuracy-based learning classifier systems: Models, analysis and applications to classification tasks
    • E. Bernadó-Mansilla andJ. Garrell-Guiu. Accuracy-based learning classifier systems: models, analysis and applications to classification tasks. Evolutionary Computation, 11(3):209-238, 2003.
    • (2003) Evolutionary Computation , vol.11 , Issue.3 , pp. 209-238
    • Bernadó-Mansilla, E.1    Garrell-Guiu, J.2
  • 5
    • 37548999369 scopus 로고    scopus 로고
    • Computational epigenetics
    • C. Bock andT. Lengauer. Computational epigenetics. Bioinformatics, 24(1):1, 2008.
    • (2008) Bioinformatics , vol.24 , Issue.1 , pp. 1
    • Bock, C.1    Lengauer, T.2
  • 6
    • 33747041580 scopus 로고    scopus 로고
    • A simple payoff-based learning classifier system
    • L. Bull. A simple payoff-based learning classifier system. Lecture notes in computer science, pages 1032-1041, 2004.
    • (2004) Lecture Notes in Computer Science , pp. 1032-1041
    • Bull, L.1
  • 11
    • 0036797562 scopus 로고    scopus 로고
    • Epistasis: What it means, what it doesn't mean, and statistical methods to detect it in humans
    • H. Cordeil. Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Human Molecular Genetics, 11(20):2463, 2002.
    • (2002) Human Molecular Genetics , vol.11 , Issue.20 , pp. 2463
    • Cordeil, H.1
  • 12
    • 57449101697 scopus 로고    scopus 로고
    • Exploring the performance of multifactor dimensionality reduction in large scale SNP studies and in the presence of genetic heterogeneity among epistatic disease models
    • T. Edwards, K. Lewis, D. Velez, S. Dudek, andM. Ritchie. Exploring the performance of multifactor dimensionality reduction in large scale SNP studies and in the presence of genetic heterogeneity among epistatic disease models. Hum Hered, 67: 183-192, 2009.
    • (2009) Hum Hered , vol.67 , pp. 183-192
    • Edwards, T.1    Lewis, K.2    Velez, D.3    Dudek, S.4    Ritchie, M.5
  • 13
    • 38049153239 scopus 로고    scopus 로고
    • LCSE: Learning classifier system ensemble for incremental medical instances
    • Y. Gao, J. Huang, H. Rong, andD. Gu. LCSE: learning classifier system ensemble for incremental medical instances. Lecture Notes in Computer Science, 4399: 93, 2007.
    • (2007) Lecture Notes in Computer Science , vol.4399 , pp. 93
    • Gao, Y.1    Huang, J.2    Rong, H.3    Gu, D.4
  • 14
    • 69449088874 scopus 로고    scopus 로고
    • Spatially uniform reliefF (SURF) for computationally-efficient filtering of gene-gene interactions
    • C. Greene, N. Penrod, J. Kiralis, andJ. Moore. Spatially Uniform ReliefF (SURF) for Computationally-Efficient Filtering of Gene-Gene Interactions. BioData mining, 2(1):5, 2009.
    • (2009) BioData Mining , vol.2 , Issue.1 , pp. 5
    • Greene, C.1    Penrod, N.2    Kiralis, J.3    Moore, J.4
  • 16
    • 0013645620 scopus 로고    scopus 로고
    • A genetics-based machine learning approach to knowledge discovery in clinical data
    • American Medical Informatics Association
    • J. Holmes. A genetics-based machine learning approach to knowledge discovery in clinical data. In Proceedings of the AMIA Annual Fall Symposium, page 883. American Medical Informatics Association, 1996.
    • (1996) Proceedings of the AMIA Annual Fall Symposium , pp. 883
    • Holmes, J.1
  • 18
    • 0001363063 scopus 로고    scopus 로고
    • Learning classifier systems applied to knowledge discovery in clinical research databases
    • J. Holmes. Learning classifier systems applied to knowledge discovery in clinical research databases. Lecture notes in computer science, pages 243-262, 2000.
    • (2000) Lecture Notes in Computer Science , pp. 243-262
    • Holmes, J.1
  • 19
    • 26944477357 scopus 로고    scopus 로고
    • Rule discovery in epidemiologic surveillance data using EpiXCS: An evolutionary computation approach
    • J. Holmes andJ. Sager. Rule discovery in epidemiologic surveillance data using EpiXCS: an evolutionary computation approach. LECTURE NOTES IN COMPUTER SCIENCE, 3581: 444, 2005.
    • (2005) Lecture Notes in Computer Science , vol.3581 , pp. 444
    • Holmes, J.1    Sager, J.2
  • 22
    • 33645739678 scopus 로고    scopus 로고
    • NIH initiatives to probe contribution of genes, environment in disease
    • B. Kuehn. NIH Initiatives to Probe Contribution of Genes, Environment in Disease. JAMA, 295(14): 1633, 2006.
    • (2006) JAMA , vol.295 , Issue.14 , pp. 1633
    • Kuehn, B.1
  • 24
    • 77949497074 scopus 로고    scopus 로고
    • Bioinformatics challenges for genome-wide association studies
    • J. Moore, F. Asselbergs, andS. Williams. Bioinformatics Challenges for Genome-Wide Association Studies. Bioinformatics, 2010.
    • (2010) Bioinformatics
    • Moore, J.1    Asselbergs, F.2    Williams, S.3
  • 25
    • 33745599582 scopus 로고    scopus 로고
    • A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility
    • J. Moore, J. Gilbert, C. Tsai, F. Chiang, T. Holden, N. Barney, andB. White. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. Journal of theoretical biology, 241(2):252-261, 2006.
    • (2006) Journal of Theoretical Biology , vol.241 , Issue.2 , pp. 252-261
    • Moore, J.1    Gilbert, J.2    Tsai, C.3    Chiang, F.4    Holden, T.5    Barney, N.6    White, B.7
  • 26
    • 2142705388 scopus 로고    scopus 로고
    • The challenges of whole-genome approaches to common diseases
    • J. Moore andM. Ritchie. The challenges of whole-genome approaches to common diseases. Jama, 291 (13): 1642, 2004.
    • (2004) Jama , vol.291 , Issue.13 , pp. 1642
    • Moore, J.1    Ritchie, M.2
  • 28
    • 36248970128 scopus 로고    scopus 로고
    • Genetic heterogeneity is not as threatening as you might think
    • M. Ritchie, T. Edwards, T. Fanelli, andA. Motsinger. Genetic heterogeneity is not as threatening as you might think. Genetic Epidemiology, 31(7):797, 2007.
    • (2007) Genetic Epidemiology , vol.31 , Issue.7 , pp. 797
    • Ritchie, M.1    Edwards, T.2    Fanelli, T.3    Motsinger, A.4
  • 29
    • 0037310257 scopus 로고    scopus 로고
    • Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity
    • M. Ritchie, L. Hahn, andJ. Moore. Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genetic epidemiology, 24(2): 150-157, 2003.
    • (2003) Genetic Epidemiology , vol.24 , Issue.2 , pp. 150-157
    • Ritchie, M.1    Hahn, L.2    Moore, J.3
  • 30
    • 0034973569 scopus 로고    scopus 로고
    • Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer
    • M. Ritchie, L. Hahn, N. Roodi, L. Bailey, W. Dupont, F. Pari, andJ. Moore. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. The American Journal of Human Genetics, 69(1):138-147, 2001.
    • (2001) The American Journal of Human Genetics , vol.69 , Issue.1 , pp. 138-147
    • Ritchie, M.1    Hahn, L.2    Roodi, N.3    Bailey, L.4    Dupont, W.5    Pari, F.6    Moore, J.7
  • 31
    • 0021779362 scopus 로고
    • Strategies for elucidating the phenotypic and genetic heterogeneity of a chronic disease with a complex etiology
    • C. Sing, E. Boerwinkle, andP. Moll. Strategies for elucidating the phenotypic and genetic heterogeneity of a chronic disease with a complex etiology. Progress in clinical and biological research, 194:39, 1985.
    • (1985) Progress in Clinical and Biological Research , vol.194 , pp. 39
    • Sing, C.1    Boerwinkle, E.2    Moll, P.3
  • 34
    • 7444257916 scopus 로고    scopus 로고
    • Genetics, statistics and human disease: Analytical retooling for complexity
    • T. Thornton-Wells, J. Moore, andJ. Haines. Genetics, statistics and human disease: analytical retooling for complexity. TRENDS in Genetics, 20(12):640-647, 2004.
    • (2004) TRENDS in Genetics , vol.20 , Issue.12 , pp. 640-647
    • Thornton-Wells, T.1    Moore, J.2    Haines, J.3
  • 35
    • 44149092424 scopus 로고    scopus 로고
    • Mining knowledge from data using anticipatory classifier system
    • O. Unold andK. Tuszyński. Mining knowledge from data using Anticipatory Classifier System. Knowledge-Based Systems, 2008.
    • (2008) Knowledge-Based Systems
    • Unold, O.1    Tuszyński, K.2
  • 38
    • 0002447833 scopus 로고
    • ZCS: A zeroth level classifier system
    • S. Wilson. ZCS: A zeroth level classifier system. Evolutionary Computation, 2(1):1-18, 1994.
    • (1994) Evolutionary Computation , vol.2 , Issue.1 , pp. 1-18
    • Wilson, S.1
  • 39
    • 0001387704 scopus 로고
    • Classifier fitness based on accuracy
    • S. Wilson. Classifier fitness based on accuracy. Evolutionary computation, 3(2):149-175, 1995.
    • (1995) Evolutionary Computation , vol.3 , Issue.2 , pp. 149-175
    • Wilson, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.