메뉴 건너뛰기




Volumn , Issue , 2007, Pages 346-353

Automated alphabet reduction method with evolutionary algorithms for protein structure prediction

Author keywords

Alphabet reduction; Bioinformatics; Coordination number prediction; Estimation of distribution algorithms; Evolutionary algorithms; Learning classifier systems; Protein structure prediction; Rule induction

Indexed keywords

BIOINFORMATICS; DISTRIBUTION FUNCTIONS; LEARNING SYSTEMS; LOGIC PROGRAMMING; PROTEINS;

EID: 34548056763     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1276958.1277033     Document Type: Conference Paper
Times cited : (42)

References (33)
  • 2
    • 33745803301 scopus 로고    scopus 로고
    • Speeding-up Pittsburgh learning classifier systems: Modeling time and accuracy
    • Parallel Problem Solving from Nature, PPSN 2004, Springer-Verlag
    • J. Bacardit, D. Goldberg, M. Butz, X. Llorà, and J. M. Garrell. Speeding-up Pittsburgh learning classifier systems: Modeling time and accuracy. In Parallel Problem Solving from Nature - PPSN 2004, pages 1021-1031. Springer-Verlag, LNCS 3242, 2004.
    • (2004) LNCS , vol.3242 , pp. 1021-1031
    • Bacardit, J.1    Goldberg, D.2    Butz, M.3    Llorà, X.4    Garrell, J.M.5
  • 5
    • 2542420004 scopus 로고    scopus 로고
    • The principled design of large-scale recursive neural network architectures dag-rnns and the protein structure prediction problem
    • P. Baldi and G. Pollastri. The principled design of large-scale recursive neural network architectures dag-rnns and the protein structure prediction problem. Journal of Machine Learning Research, 4:575 - 602, 2003.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 575-602
    • Baldi, P.1    Pollastri, G.2
  • 6
    • 33845275044 scopus 로고    scopus 로고
    • Amino acid properties and consequences of subsitutions
    • Wiley
    • M. Betts and R. Russell. Amino acid properties and consequences of subsitutions. In Bioinformatics for Geneticists. Wiley, 2003.
    • (2003) Bioinformatics for Geneticists
    • Betts, M.1    Russell, R.2
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 8
    • 0034598954 scopus 로고    scopus 로고
    • Nature disfavors sequences of alternating polar and non-polar amino acids: Implications for amyloidogenesis
    • B. Broome and M. Hecht. Nature disfavors sequences of alternating polar and non-polar amino acids: implications for amyloidogenesis. J Mol Biol, 296(4):961-968, 2000.
    • (2000) J Mol Biol , vol.296 , Issue.4 , pp. 961-968
    • Broome, B.1    Hecht, M.2
  • 9
    • 0023645034 scopus 로고
    • Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins
    • J. Cornette, K. Cease, H. Margalit, J. Spouge, J. Berzofsky, and C. DeLisi. Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. J Mol Biol, 195(3):659-685, 1987.
    • (1987) J Mol Biol , vol.195 , Issue.3 , pp. 659-685
    • Cornette, J.1    Cease, K.2    Margalit, H.3    Spouge, J.4    Berzofsky, J.5    DeLisi, C.6
  • 11
    • 34548086640 scopus 로고    scopus 로고
    • L. de la Ossa, K. Sastry, and F. G. Lobo. X_ary extended compact genetic algorithm in c++. Technical Report 2006013, Illinois Genetic Algorithms Lab, University of Illinois at Urbana-Champaign, 2006.
    • L. de la Ossa, K. Sastry, and F. G. Lobo. X_ary extended compact genetic algorithm in c++. Technical Report 2006013, Illinois Genetic Algorithms Lab, University of Illinois at Urbana-Champaign, 2006.
  • 13
    • 0033075882 scopus 로고    scopus 로고
    • Separate-and-conquer rule learning
    • February
    • J. Fürnkranz. Separate-and-conquer rule learning. Artificial Intelligence Review, 13(1):3-54, February 1999.
    • (1999) Artificial Intelligence Review , vol.13 , Issue.1 , pp. 3-54
    • Fürnkranz, J.1
  • 14
    • 34548108564 scopus 로고    scopus 로고
    • G. Harik. Linkage learning via probabilistic modeling in the ecga. Technical Report 99010, Illinois Genetic Algorithms Lab, University of Illinois at Urbana-Champaign, 1999.
    • G. Harik. Linkage learning via probabilistic modeling in the ecga. Technical Report 99010, Illinois Genetic Algorithms Lab, University of Illinois at Urbana-Champaign, 1999.
  • 16
    • 10844226577 scopus 로고    scopus 로고
    • Predicting absolute contact numbers of native protein structure from amino acid sequence
    • A. R. Kinjo, K. Horimoto, and K. Nishikawa. Predicting absolute contact numbers of native protein structure from amino acid sequence. Proteins, 58:158-165, 2005.
    • (2005) Proteins , vol.58 , pp. 158-165
    • Kinjo, A.R.1    Horimoto, K.2    Nishikawa, K.3
  • 18
    • 0041481252 scopus 로고    scopus 로고
    • Estimation of Distribution Algorithms, A New Tool for Evolutionnary Computation
    • P. Larranaga and J. Lozano, editors, Kluwer Academic Publishers
    • P. Larranaga and J. Lozano, editors. Estimation of Distribution Algorithms, A New Tool for Evolutionnary Computation. Genetic Algorithms and Evolutionnary Computation. Kluwer Academic Publishers, 2002.
    • (2002) Genetic Algorithms and Evolutionnary Computation
  • 19
    • 24744453057 scopus 로고    scopus 로고
    • Striped sheets and protein contact prediction
    • R. MacCallum. Striped sheets and protein contact prediction. Bioinformatics, 20:I224-I231, 2004.
    • (2004) Bioinformatics , vol.20
    • MacCallum, R.1
  • 20
    • 0036404919 scopus 로고    scopus 로고
    • On the significance of alternating patterns of polar and non-polar residues in beta-strands
    • Y. Mandel-Gutfreund and L. Gregoret. On the significance of alternating patterns of polar and non-polar residues in beta-strands. Journal of Molecular Biology, 323(9):453-461, 2002.
    • (2002) Journal of Molecular Biology , vol.323 , Issue.9 , pp. 453-461
    • Mandel-Gutfreund, Y.1    Gregoret, L.2
  • 21
    • 0035789525 scopus 로고    scopus 로고
    • Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks
    • J. Meiler, M. M. A. Zeidler, and F. Schmähke. Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks. J Mol Model, 7:360-369, 2001.
    • (2001) J Mol Model , vol.7 , pp. 360-369
    • Meiler, J.1    Zeidler, M.M.A.2    Schmähke, F.3
  • 22
    • 33646808944 scopus 로고    scopus 로고
    • Accuracy of sequence alignment and fold assessment using reduced amino acid alphabets
    • F. Melo and M. Marti-Renom. Accuracy of sequence alignment and fold assessment using reduced amino acid alphabets. Proteins, 63:986-995, 2006.
    • (2006) Proteins , vol.63 , pp. 986-995
    • Melo, F.1    Marti-Renom, M.2
  • 23
    • 18244392226 scopus 로고    scopus 로고
    • Optimizing protein representations with information theory
    • J. Mintseris and Z. Weng. Optimizing protein representations with information theory. Genome Informatics, 15(1):160-169, 2004.
    • (2004) Genome Informatics , vol.15 , Issue.1 , pp. 160-169
    • Mintseris, J.1    Weng, Z.2
  • 24
    • 33645792604 scopus 로고    scopus 로고
    • Physically realistic homology models built with rosetta can be more accurate than their templates
    • K. M. Misura, D. Chivian, C A. Rohl, D. E. Kim, and D. Baker. Physically realistic homology models built with rosetta can be more accurate than their templates. Proc Natl Acad Sci USA, 103(14):5361-5366, 2006.
    • (2006) Proc Natl Acad Sci USA , vol.103 , Issue.14 , pp. 5361-5366
    • Misura, K.M.1    Chivian, D.2    Rohl, C.A.3    Kim, D.E.4    Baker, D.5
  • 25
    • 0035172128 scopus 로고    scopus 로고
    • Pdb-reprdb: A database of representative protein chains from the protein data bank (pdb)
    • T. Noguchi, H. Matsuda, and Y. Akiyama. Pdb-reprdb: a database of representative protein chains from the protein data bank (pdb). Nucleic Acids Res, 29:219-220, 2001.
    • (2001) Nucleic Acids Res , vol.29 , pp. 219-220
    • Noguchi, T.1    Matsuda, H.2    Akiyama, Y.3
  • 27
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen. Modeling by shortest data description. Automá tica, vol. 14:465-471, 1978.
    • (1978) Automá tica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 28
    • 0026030641 scopus 로고
    • Database of homology-derived protein structures
    • C. Sander and R. Schneider. Database of homology-derived protein structures. Proteins, 9:56-68, 1991.
    • (1991) Proteins , vol.9 , pp. 56-68
    • Sander, C.1    Schneider, R.2
  • 29
    • 33745792532 scopus 로고    scopus 로고
    • From hp lattice models to real proteins: Coordination number prediction using learning classifier systems
    • Applications of Evolutionary Computing, Evo Workshops 2006
    • M. Stout, J. Bacardit, J. D. Hirst, N. Krasnogor, and J. Blazewicz. From hp lattice models to real proteins: Coordination number prediction using learning classifier systems. In Applications of Evolutionary Computing, Evo Workshops 2006, pages 208-220. Springer LNCS 3907, 2006.
    • (2006) Springer LNCS , vol.3907 , pp. 208-220
    • Stout, M.1    Bacardit, J.2    Hirst, J.D.3    Krasnogor, N.4    Blazewicz, J.5
  • 30
    • 84971641220 scopus 로고
    • Sia: A supervised inductive algorithm with genetic search for learning attributes based concepts
    • P. B. Brazdil, editor, Springer-Verlag, Berlin, Heidelberg
    • G. Venturini. Sia: A supervised inductive algorithm with genetic search for learning attributes based concepts. In P. B. Brazdil, editor, Machine Learning: ECML-93 - Proc. of the European Conference on Machine Learning, pages 280-296. Springer-Verlag, Berlin, Heidelberg, 1993.
    • (1993) Machine Learning: ECML-93 - Proc. of the European Conference on Machine Learning , pp. 280-296
    • Venturini, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.