메뉴 건너뛰기




Volumn , Issue , 2007, Pages 2066-2073

Mining breast cancer data with XCS

Author keywords

Classification; Genetic algorithm; Learning classifier system; Medical informatics

Indexed keywords

CLASSIFICATION (OF INFORMATION); GENETIC ALGORITHMS; MEDICAL EDUCATION; ONCOLOGY;

EID: 34548137365     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1276958.1277362     Document Type: Conference Paper
Times cited : (26)

References (38)
  • 1
    • 34548133996 scopus 로고    scopus 로고
    • Data Mining in Learning Classifier Systems: Comparing XCS with GAssis
    • Advances in Learning Classifier Systems 7th International Workshop, IWLCS 2004, Seattle, USA, Springer
    • Bacardit, J., & Butz, M. (2004). Data Mining in Learning Classifier Systems: Comparing XCS with GAssis. Advances in Learning Classifier Systems (7th International Workshop, IWLCS 2004), Seattle, USA, LNAI, Springer.
    • (2004) LNAI
    • Bacardit, J.1    Butz, M.2
  • 2
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behaviour of several methods for balancing machine learning training data
    • Batista, G., Prati, R., & Monard, M. (2004). A study of the behaviour of several methods for balancing machine learning training data. SIGKDD Explorations, 6(1), pp 20-29.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.1    Prati, R.2    Monard, M.3
  • 4
    • 0003408496 scopus 로고    scopus 로고
    • online, Irvine, CA: University of California, Department of Information and Computer Science. Available from:, Accessed 2
    • Blake, C., & Merz, C. (1998). UCI Repository of Machine Learning Databases [online], Irvine, CA: University of California, Department of Information and Computer Science. Available from: http://www.ics.uci.edu/ ~mlearn/MLRepository.html [Accessed 2/2004].
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.1    Merz, C.2
  • 6
    • 84942854203 scopus 로고    scopus 로고
    • Butz, M. & Wilson, S.W. (2001) An Algorithmic Description of XCS. In Advances in Learning Classifier Systems: Proceedings of the Third International Conference - IWLCS2000. Springer, pp. 253-272.
    • Butz, M. & Wilson, S.W. (2001) An Algorithmic Description of XCS. In Advances in Learning Classifier Systems: Proceedings of the Third International Conference - IWLCS2000. Springer, pp. 253-272.
  • 8
    • 34548136485 scopus 로고    scopus 로고
    • Holland, J.H. (1986). Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems. In Michalski, Carbonell, & Mitchell (eds) Machine learning, an artificial intelligence approach. Morgan Kaufmann.
    • Holland, J.H. (1986). Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems. In Michalski, Carbonell, & Mitchell (eds) Machine learning, an artificial intelligence approach. Morgan Kaufmann.
  • 10
    • 0001363063 scopus 로고    scopus 로고
    • Learning Classifier Systems Applied to Knowledge Discovery in Clinical Research Databases
    • P. Lanzi, W. Stolzmann, S. W. Wilson eds, Springer-Verlag Heidelberg, pp
    • Holmes, J. (2000). Learning Classifier Systems Applied to Knowledge Discovery in Clinical Research Databases. In: P. Lanzi, W. Stolzmann, S. W. Wilson (eds). Learning Classifier Systems: From Foundations to Applications. Springer-Verlag Heidelberg, pp 243-261
    • (2000) Learning Classifier Systems: From Foundations to Applications , pp. 243-261
    • Holmes, J.1
  • 11
    • 0346325836 scopus 로고    scopus 로고
    • Holmes J., Bilker W., (2002) The Effect of Missing Data on Learning Classifier System Learning Rate and Classification Performance. IWLCS 2002: 46-60.
    • Holmes J., Bilker W., (2002) The Effect of Missing Data on Learning Classifier System Learning Rate and Classification Performance. IWLCS 2002: 46-60.
  • 14
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • Japkowicz, N., and Stephen, S.(2002) The class imbalance problem: a systematic study. Intelligent Data Analysis, 6(5):429-450.
    • (2002) Intelligent Data Analysis , vol.6 , Issue.5 , pp. 429-450
    • Japkowicz, N.1    Stephen, S.2
  • 17
    • 27144540575 scopus 로고    scopus 로고
    • Class Imbalances versus Small Disjoints
    • Jo, T., & Japkowicz, N. (2004). Class Imbalances versus Small Disjoints, SIGKDD Explorations,6(1).
    • (2004) SIGKDD Explorations , vol.6 , Issue.1
    • Jo, T.1    Japkowicz, N.2
  • 24
    • 34548142124 scopus 로고    scopus 로고
    • Quinlan, J. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA.
    • Quinlan, J. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA.
  • 25
    • 0344447109 scopus 로고    scopus 로고
    • Predicting the survival in malignant skin melanoma using Bayesian networks. An empirical comparison between different approaches
    • Sierra, B., & Larrannaga, P. (1998). Predicting the survival in malignant skin melanoma using Bayesian networks. An empirical comparison between different approaches, Artificial Intelligence in Medicine, 14(1-2), pp 215-230.
    • (1998) Artificial Intelligence in Medicine , vol.14 , Issue.1-2 , pp. 215-230
    • Sierra, B.1    Larrannaga, P.2
  • 26
    • 0347181849 scopus 로고    scopus 로고
    • A data review and reassessment of ovarian cancer serum proteomic profiling
    • Sorace, J., & Zhan, M. (2003). A data review and reassessment of ovarian cancer serum proteomic profiling. BMC Bioinformatics 4(24).
    • (2003) BMC Bioinformatics , vol.4 , Issue.24
    • Sorace, J.1    Zhan, M.2
  • 27
    • 0037291442 scopus 로고    scopus 로고
    • Evolutionary computing for knowledge discovery in medical diagnosis
    • Tan, K., Yu, Q., Heng, C., & Lee, T. (2003). Evolutionary computing for knowledge discovery in medical diagnosis, Artificial Intelligence in Medicine, 27(2), pp 129-154.
    • (2003) Artificial Intelligence in Medicine , vol.27 , Issue.2 , pp. 129-154
    • Tan, K.1    Yu, Q.2    Heng, C.3    Lee, T.4
  • 28
    • 34548119067 scopus 로고    scopus 로고
    • Wilson, S. (2001). Compact Rulesets from XCSI. Fourth International Workshop on Learning Classifier Systems (IWLCS-2001). pp. 197-210, San Francisco, CA
    • Wilson, S. (2001). Compact Rulesets from XCSI. Fourth International Workshop on Learning Classifier Systems (IWLCS-2001). pp. 197-210, San Francisco, CA
  • 29
    • 0001387704 scopus 로고
    • Classifier Fitness Based on Accuracy
    • Wilson, S., (1995) Classifier Fitness Based on Accuracy. Evolutionary Computing 3: 149-175.
    • (1995) Evolutionary Computing , vol.3 , pp. 149-175
    • Wilson, S.1
  • 31
    • 34547508753 scopus 로고    scopus 로고
    • Building Compact Rulesets for Describing Continuous-Valued Problem Spaces Using a Learning Classifier System
    • I. Parmee ed, Springer, pp
    • Wyatt, D., Bull, L., & Parmee, I. (2004). Building Compact Rulesets for Describing Continuous-Valued Problem Spaces Using a Learning Classifier System. In: I. Parmee (ed). Adaptive Computing in Design and Manufacture VI. Springer, pp 235-248.
    • (2004) Adaptive Computing in Design and Manufacture VI , pp. 235-248
    • Wyatt, D.1    Bull, L.2    Parmee, I.3
  • 32
    • 9444270977 scopus 로고    scopus 로고
    • Prati, R., Batista, G., and Monard, M. (2004) Class Imbalances versus Class Overlapping: an Analysis of a Learning System Behavior. In MICAI, pp. 312-321.
    • Prati, R., Batista, G., and Monard, M. (2004) Class Imbalances versus Class Overlapping: an Analysis of a Learning System Behavior. In MICAI, pp. 312-321.
  • 33
    • 34547973397 scopus 로고    scopus 로고
    • The imbalanced training sample problem: Under or over sampling?
    • Joint IAPR International Workshops on Structural, Syntactic, and Statistical Pattern Recognition SSPR/SPR'04, Springer-Verlag, pp
    • Barandela, R., Valdovinos, R., Scnchez, J., & Ferri, F. (2004). The imbalanced training sample problem: Under or over sampling?. Joint IAPR International Workshops on Structural, Syntactic, and Statistical Pattern Recognition (SSPR/SPR'04). Lecture Notes in Computer Science 3138, Springer-Verlag, pp 806-814.
    • (2004) Lecture Notes in Computer Science , vol.3138 , pp. 806-814
    • Barandela, R.1    Valdovinos, R.2    Scnchez, J.3    Ferri, F.4
  • 34
    • 0003120218 scopus 로고    scopus 로고
    • Fast Training of Support Vector Machines using Sequential Minimal Optimization
    • B. Schoelkopf, C Burges, and A. Smola eds, MIT Press, pp
    • Platt, J. (1998). Fast Training of Support Vector Machines using Sequential Minimal Optimization. Advances in Kernel Methods - Support Vector Learning In: B. Schoelkopf, C Burges, and A. Smola (eds). MIT Press, pp 185-208.
    • (1998) Advances in Kernel Methods - Support Vector Learning In , pp. 185-208
    • Platt, J.1
  • 36
    • 7044239082 scopus 로고    scopus 로고
    • A Ruleset Reduction Algorithm for the XCS Learning Classifier System
    • P. Lanzi, W. Stolzmann, and S. Wilson eds, Proceedings of the 3rd International Workshop on Learning Classifier Systems
    • Dixon, P., Corne, D., & Oates, M. (2003). A Ruleset Reduction Algorithm for the XCS Learning Classifier System. In: P. Lanzi, W. Stolzmann, and S. Wilson (eds.) Proceedings of the 3rd International Workshop on Learning Classifier Systems. Springer LNCS, pp 20-29.
    • (2003) Springer LNCS , pp. 20-29
    • Dixon, P.1    Corne, D.2    Oates, M.3
  • 38
    • 0041780883 scopus 로고    scopus 로고
    • Analysis and improvement of fitness exploration in XCS: bounding models, Tournament selection and bilateral accuracy. Evolutionary Computation, 11(3), pp 239-277.
    • Analysis and improvement of fitness exploration in XCS: bounding models, Tournament selection and bilateral accuracy. Evolutionary Computation, 11(3), pp 239-277.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.