-
1
-
-
0032568257
-
Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus
-
Inzucchi S.E., Maggs D.G., Spollett G.R., Page S.L., Rife F.S., Walton V., Shulman G.I. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J. Med. 1998, 338:867-873.
-
(1998)
N Engl J. Med.
, vol.338
, pp. 867-873
-
-
Inzucchi, S.E.1
Maggs, D.G.2
Spollett, G.R.3
Page, S.L.4
Rife, F.S.5
Walton, V.6
Shulman, G.I.7
-
2
-
-
0027495982
-
The impact of metformin therapy on hepatic glucose production and skeletal muscle glycogen synthase activity in overweight type II diabetic patients
-
Johnson A.B., Webster J.M., Sum C.F., Heseltine L., Argyraki M., Cooper B.G., Taylor R. The impact of metformin therapy on hepatic glucose production and skeletal muscle glycogen synthase activity in overweight type II diabetic patients. Metabolism 1993, 42:1217-1222.
-
(1993)
Metabolism
, vol.42
, pp. 1217-1222
-
-
Johnson, A.B.1
Webster, J.M.2
Sum, C.F.3
Heseltine, L.4
Argyraki, M.5
Cooper, B.G.6
Taylor, R.7
-
3
-
-
0029133235
-
Metabolic effects of metformin in non-insulin-dependent diabetes mellitus
-
Stumvoll M., Nurjhan N., Perriello G., Dailey G., Gerich J.E. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J. Med. 1995, 333:550-554.
-
(1995)
N Engl J. Med.
, vol.333
, pp. 550-554
-
-
Stumvoll, M.1
Nurjhan, N.2
Perriello, G.3
Dailey, G.4
Gerich, J.E.5
-
4
-
-
0024519649
-
Metformin improves peripheral but not hepatic insulin action in obese patients with type II diabetes
-
Hother-Nielsen O., Schmitz O., Andersen P.H., Beck-Nielsen H., Pedersen O. Metformin improves peripheral but not hepatic insulin action in obese patients with type II diabetes. Acta Endocrinol. (Copenhagen) 1989, 120:257-265.
-
(1989)
Acta Endocrinol. (Copenhagen)
, vol.120
, pp. 257-265
-
-
Hother-Nielsen, O.1
Schmitz, O.2
Andersen, P.H.3
Beck-Nielsen, H.4
Pedersen, O.5
-
5
-
-
0036068327
-
Troglitazone but not metformin restores insulin-stimulated phosphoinositide 3-kinase activity and increases p110β protein levels in skeletal muscle of type 2 diabetic subjects
-
Kim Y.-B., Ciaraldi T.P., Kong A., Kim D., Chu N., Mohideen P., Mudaliar S., Henry R.R., Kahn B.B. Troglitazone but not metformin restores insulin-stimulated phosphoinositide 3-kinase activity and increases p110β protein levels in skeletal muscle of type 2 diabetic subjects. Diabetes 2002, 51:443-448.
-
(2002)
Diabetes
, vol.51
, pp. 443-448
-
-
Kim, Y.-B.1
Ciaraldi, T.P.2
Kong, A.3
Kim, D.4
Chu, N.5
Mohideen, P.6
Mudaliar, S.7
Henry, R.R.8
Kahn, B.B.9
-
6
-
-
0036299982
-
Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes
-
Musi N., Hirshman M.F., Nygren J., Svanfeldt M., Bavenholm P., Rooyackers O., Zhou G., Williamson J.M., Ljunqvist O., Efendic S., Moller D.E., Thorell A., Goodyear L.J. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 2002, 51:2074-2081.
-
(2002)
Diabetes
, vol.51
, pp. 2074-2081
-
-
Musi, N.1
Hirshman, M.F.2
Nygren, J.3
Svanfeldt, M.4
Bavenholm, P.5
Rooyackers, O.6
Zhou, G.7
Williamson, J.M.8
Ljunqvist, O.9
Efendic, S.10
Moller, D.E.11
Thorell, A.12
Goodyear, L.J.13
-
7
-
-
0033673203
-
Mechanism by which metformin reduces glucose production in type 2 diabetes
-
Hundal R.S., Krssak M., Dufour S., Laurent D., Lebon V., Chandramouli V., Inzucchi S.E., Schumann W.C., Petersen K.F., Landau B.R., Shulman G.I. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 2000, 49:2063-2069.
-
(2000)
Diabetes
, vol.49
, pp. 2063-2069
-
-
Hundal, R.S.1
Krssak, M.2
Dufour, S.3
Laurent, D.4
Lebon, V.5
Chandramouli, V.6
Inzucchi, S.E.7
Schumann, W.C.8
Petersen, K.F.9
Landau, B.R.10
Shulman, G.I.11
-
8
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action
-
Zhou G., Myers R., Li Y., Chen Y., Shen X., Fenyk-Melody J., Wu M., Ventre J., Doebber T., Fujii N., Musi N., Hirshman M.F., Goodyear L.J., Moller D.E. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 2001, 108:1167-1174.
-
(2001)
J. Clin. Invest.
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
Myers, R.2
Li, Y.3
Chen, Y.4
Shen, X.5
Fenyk-Melody, J.6
Wu, M.7
Ventre, J.8
Doebber, T.9
Fujii, N.10
Musi, N.11
Hirshman, M.F.12
Goodyear, L.J.13
Moller, D.E.14
-
9
-
-
0034614420
-
Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I
-
El-Mir M.Y., Nogueira V., Fontaine E., Averet N., Rigoulet M., Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem. 2000, 275:223-228.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 223-228
-
-
El-Mir, M.Y.1
Nogueira, V.2
Fontaine, E.3
Averet, N.4
Rigoulet, M.5
Leverve, X.6
-
10
-
-
0034659785
-
Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain
-
Owen M.R., Doran E., Halestrap A.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 2000, 348(Pt 3):607-614.
-
(2000)
Biochem. J.
, vol.348
, Issue.PART 3
, pp. 607-614
-
-
Owen, M.R.1
Doran, E.2
Halestrap, A.P.3
-
11
-
-
28844433635
-
The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
-
Shaw R.J., Lamia K.A., Vasquez D., Koo S.H., Bardeesy N., Depinho R.A., Montminy M., Cantley L.C. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 2005, 310:1642-1646.
-
(2005)
Science
, vol.310
, pp. 1642-1646
-
-
Shaw, R.J.1
Lamia, K.A.2
Vasquez, D.3
Koo, S.H.4
Bardeesy, N.5
Depinho, R.A.6
Montminy, M.7
Cantley, L.C.8
-
12
-
-
12144291275
-
Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions?
-
Brunmair B., Staniek K., Gras F., Scharf N., Althaym A., Clara R., Roden M., Gnaiger E., Nohl H., Waldhausl W., Furnsinn C. Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions?. Diabetes 2004, 53:1052-1059.
-
(2004)
Diabetes
, vol.53
, pp. 1052-1059
-
-
Brunmair, B.1
Staniek, K.2
Gras, F.3
Scharf, N.4
Althaym, A.5
Clara, R.6
Roden, M.7
Gnaiger, E.8
Nohl, H.9
Waldhausl, W.10
Furnsinn, C.11
-
13
-
-
38649115973
-
Metformin promotes isolated rat liver mitochondria impairment
-
Carvalho C., Correia S., Santos M.S., Seica R., Oliveira C.R., Moreira P.I. Metformin promotes isolated rat liver mitochondria impairment. Mol. Cell. Biochem. 2008, 308:75-83.
-
(2008)
Mol. Cell. Biochem.
, vol.308
, pp. 75-83
-
-
Carvalho, C.1
Correia, S.2
Santos, M.S.3
Seica, R.4
Oliveira, C.R.5
Moreira, P.I.6
-
14
-
-
0036324142
-
The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism
-
Hawley S.A., Gadalla A.E., Olsen G.S., Hardie D.G. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 2002, 51:2420-2425.
-
(2002)
Diabetes
, vol.51
, pp. 2420-2425
-
-
Hawley, S.A.1
Gadalla, A.E.2
Olsen, G.S.3
Hardie, D.G.4
-
15
-
-
33748118458
-
Neither LKB1 nor AMPK are the direct targets of metformin
-
author reply 974-975
-
Hardie D.G. Neither LKB1 nor AMPK are the direct targets of metformin. Gastroenterology 2006, 131:973. author reply 974-975.
-
(2006)
Gastroenterology
, vol.131
, pp. 973
-
-
Hardie, D.G.1
-
16
-
-
0038410183
-
An intracellular modulation of free radical production could contribute to the beneficial effects of metformin towards oxidative stress
-
Bonnefont-Rousselot D., Raji B., Walrand S., Gardes-Albert M., Jore D., Legrand A., Peynet J., Vasson M.P. An intracellular modulation of free radical production could contribute to the beneficial effects of metformin towards oxidative stress. Metabolism 2003, 52:586-589.
-
(2003)
Metabolism
, vol.52
, pp. 586-589
-
-
Bonnefont-Rousselot, D.1
Raji, B.2
Walrand, S.3
Gardes-Albert, M.4
Jore, D.5
Legrand, A.6
Peynet, J.7
Vasson, M.P.8
-
17
-
-
21344462345
-
Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process
-
Detaille D., Guigas B., Chauvin C., Batandier C., Fontaine E., Wiernsperger N., Leverve X. Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes 2005, 54:2179-2187.
-
(2005)
Diabetes
, vol.54
, pp. 2179-2187
-
-
Detaille, D.1
Guigas, B.2
Chauvin, C.3
Batandier, C.4
Fontaine, E.5
Wiernsperger, N.6
Leverve, X.7
-
18
-
-
4744355266
-
Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study
-
Guigas B., Detaille D., Chauvin C., Batandier C., De Oliveira F., Fontaine E., Leverve X. Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study. Biochem. J. 2004, 382:877-884.
-
(2004)
Biochem. J.
, vol.382
, pp. 877-884
-
-
Guigas, B.1
Detaille, D.2
Chauvin, C.3
Batandier, C.4
De Oliveira, F.5
Fontaine, E.6
Leverve, X.7
-
19
-
-
19444380162
-
Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells
-
Ouslimani N., Peynet J., Bonnefont-Rousselot D., Therond P., Legrand A., Beaudeux J.L. Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells. Metabolism 2005, 54:829-834.
-
(2005)
Metabolism
, vol.54
, pp. 829-834
-
-
Ouslimani, N.1
Peynet, J.2
Bonnefont-Rousselot, D.3
Therond, P.4
Legrand, A.5
Beaudeux, J.L.6
-
20
-
-
33746068289
-
Metformin delays the manifestation of diabetes and vascular dysfunction in Goto-Kakizaki rats by reduction of mitochondrial oxidative stress
-
Rosen P., Wiernsperger N.F. Metformin delays the manifestation of diabetes and vascular dysfunction in Goto-Kakizaki rats by reduction of mitochondrial oxidative stress. Diabetes Metab. Res. Rev. 2006, 22:323-330.
-
(2006)
Diabetes Metab. Res. Rev.
, vol.22
, pp. 323-330
-
-
Rosen, P.1
Wiernsperger, N.F.2
-
21
-
-
33746102508
-
The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin
-
Batandier C., Guigas B., Detaille D., El-Mir M.Y., Fontaine E., Rigoulet M., Leverve X.M. The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin. J. Bioenerg. Biomembr. 2006, 38:33-42.
-
(2006)
J. Bioenerg. Biomembr.
, vol.38
, pp. 33-42
-
-
Batandier, C.1
Guigas, B.2
Detaille, D.3
El-Mir, M.Y.4
Fontaine, E.5
Rigoulet, M.6
Leverve, X.M.7
-
23
-
-
0036319021
-
Generation of reactive oxygen species by the mitochondrial electron transport chain
-
Liu Y., Fiskum G., Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 2002, 80:780-787.
-
(2002)
J. Neurochem.
, vol.80
, pp. 780-787
-
-
Liu, Y.1
Fiskum, G.2
Schubert, D.3
-
24
-
-
35748953472
-
Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration
-
Anderson E.J., Yamazaki H., Neufer P.D. Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration. J. Biol. Chem. 2007, 282:31257-31266.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 31257-31266
-
-
Anderson, E.J.1
Yamazaki, H.2
Neufer, P.D.3
-
25
-
-
0037160091
-
Topology of superoxide production from different sites in the mitochondrial electron transport chain
-
St-Pierre J., Buckingham J.A., Roebuck S.J., Brand M.D. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J. Biol. Chem. 2002, 277:44784-44790.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 44784-44790
-
-
St-Pierre, J.1
Buckingham, J.A.2
Roebuck, S.J.3
Brand, M.D.4
-
26
-
-
67650815430
-
2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans
-
2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J. Clin. Invest. 2009, 119:573-581.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 573-581
-
-
Anderson, E.J.1
Lustig, M.E.2
Boyle, K.E.3
Woodlief, T.L.4
Kane, D.A.5
Lin, C.T.6
Price, J.W.I.I.I.7
Kang, L.8
Rabinovitch, P.S.9
Szeto, H.H.10
Houmard, J.A.11
Cortright, R.N.12
Wasserman, D.H.13
Neufer, P.D.14
-
27
-
-
10344258540
-
Striking differences between the kinetics of regulation of respiration by ADP in slow-twitch and fast-twitch muscles in vivo
-
Kuznetsov A.V., Tiivel T., Sikk P., Kaambre T., Kay L., Daneshrad Z., Rossi A., Kadaja L., Peet N., Seppet E., Saks V.A. Striking differences between the kinetics of regulation of respiration by ADP in slow-twitch and fast-twitch muscles in vivo. Eur. J. Biochem. 1996, 241:909-915.
-
(1996)
Eur. J. Biochem.
, vol.241
, pp. 909-915
-
-
Kuznetsov, A.V.1
Tiivel, T.2
Sikk, P.3
Kaambre, T.4
Kay, L.5
Daneshrad, Z.6
Rossi, A.7
Kadaja, L.8
Peet, N.9
Seppet, E.10
Saks, V.A.11
-
28
-
-
0037405440
-
Human skeletal muscle interstitial glutathione levels are elevated in comparison to adipose tissue and blood plasma
-
Tonkonogi M., Henriksson J., Cotgreave I.A. Human skeletal muscle interstitial glutathione levels are elevated in comparison to adipose tissue and blood plasma. Arch. Biochem. Biophys. 2003, 413:147-149.
-
(2003)
Arch. Biochem. Biophys.
, vol.413
, pp. 147-149
-
-
Tonkonogi, M.1
Henriksson, J.2
Cotgreave, I.A.3
-
29
-
-
56049086590
-
Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro
-
Dykens J.A., Jamieson J., Marroquin L., Nadanaciva S., Billis P.A., Will Y. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro. Toxicol. Appl. Pharmacol. 2008, 233:203-210.
-
(2008)
Toxicol. Appl. Pharmacol.
, vol.233
, pp. 203-210
-
-
Dykens, J.A.1
Jamieson, J.2
Marroquin, L.3
Nadanaciva, S.4
Billis, P.A.5
Will, Y.6
-
30
-
-
77957010982
-
Citrate synthase
-
Srere P.A. Citrate synthase. Methods Enzymol. 1969, 13:3-5.
-
(1969)
Methods Enzymol.
, vol.13
, pp. 3-5
-
-
Srere, P.A.1
-
31
-
-
2342431848
-
Opening of the mitochondrial permeability transition pore induces reactive oxygen species production at the level of the respiratory chain complex I
-
Batandier C., Leverve X., Fontaine E. Opening of the mitochondrial permeability transition pore induces reactive oxygen species production at the level of the respiratory chain complex I. J. Biol. Chem. 2004, 279:17197-17204.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 17197-17204
-
-
Batandier, C.1
Leverve, X.2
Fontaine, E.3
-
32
-
-
28444497837
-
High-fat diet feeding impairs both the expression and activity of AMPKa in rats' skeletal muscle
-
Liu Y., Wan Q., Guan Q., Gao L., Zhao J. High-fat diet feeding impairs both the expression and activity of AMPKa in rats' skeletal muscle. Biochem. Biophys. Res. Commun. 2006, 339:701-707.
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.339
, pp. 701-707
-
-
Liu, Y.1
Wan, Q.2
Guan, Q.3
Gao, L.4
Zhao, J.5
-
33
-
-
33845411854
-
Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo
-
Suwa M., Egashira T., Nakano H., Sasaki H., Kumagai S. Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J. Appl. Physiol. 2006, 101:1685-1692.
-
(2006)
J. Appl. Physiol.
, vol.101
, pp. 1685-1692
-
-
Suwa, M.1
Egashira, T.2
Nakano, H.3
Sasaki, H.4
Kumagai, S.5
-
34
-
-
67349117275
-
What is the mitochondrial permeability transition pore?
-
Halestrap A.P. What is the mitochondrial permeability transition pore?. J. Mol. Cell. Cardiol. 2009, 46:821-831.
-
(2009)
J. Mol. Cell. Cardiol.
, vol.46
, pp. 821-831
-
-
Halestrap, A.P.1
-
35
-
-
0032524667
-
Regulation of the permeability transition pore in skeletal muscle mitochondria. modulation by electron flow through the respiratory chain complex I
-
Fontaine E., Eriksson O., Ichas F., Bernardi P. Regulation of the permeability transition pore in skeletal muscle mitochondria. modulation by electron flow through the respiratory chain complex I. J. Biol. Chem. 1998, 273:12662-12668.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 12662-12668
-
-
Fontaine, E.1
Eriksson, O.2
Ichas, F.3
Bernardi, P.4
-
36
-
-
55049101811
-
Metformin induces oxidative stress in white adipocytes and raises uncoupling protein 2 levels
-
Anedda A., Rial E., Gonzalez-Barroso M.M. Metformin induces oxidative stress in white adipocytes and raises uncoupling protein 2 levels. J. Endocrinol. 2008, 199:33-40.
-
(2008)
J. Endocrinol.
, vol.199
, pp. 33-40
-
-
Anedda, A.1
Rial, E.2
Gonzalez-Barroso, M.M.3
-
37
-
-
0029933886
-
Clinical pharmacokinetics of metformin
-
Scheen A.J. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet. 1996, 30:359-371.
-
(1996)
Clin. Pharmacokinet.
, vol.30
, pp. 359-371
-
-
Scheen, A.J.1
-
38
-
-
0026682478
-
Biguanides and NIDDM
-
Bailey C.J. Biguanides and NIDDM. Diab. Care 1992, 15:755-772.
-
(1992)
Diab. Care
, vol.15
, pp. 755-772
-
-
Bailey, C.J.1
|