메뉴 건너뛰기




Volumn 7, Issue 3, 2010, Pages 537-549

Nonnegative principal component analysis for cancer molecular pattern discovery

Author keywords

Biomarker discovery; classification; feature selection; overfitting

Indexed keywords

BIO-MARKER DISCOVERY; CLASSIFICATION ALGORITHM; CLASSIFICATION FEATURES; CLASSIFICATION RESULTS; FEATURE SELECTION ALGORITHM; GAUSSIAN KERNELS; GLOBAL FEATURE; HIGH DIMENSIONAL DATA; LEARNING MACHINES; MICROARRAY DATA; MICROARRAY DATA SETS; MOLECULAR PATTERNS; OVERFITTING; PRINCIPAL COMPONENTS; SVM ALGORITHM;

EID: 77955469674     PISSN: 15455963     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCBB.2009.36     Document Type: Article
Times cited : (52)

References (50)
  • 1
    • 10244252786 scopus 로고    scopus 로고
    • Systematic benchmarking of microarray data classification: Assessing the role of non-linearity and dimensionality reduction
    • N. Pochet, F. De Smet, J.A.K. Suykens, and B.L.R. De Moor, "Systematic Benchmarking of Microarray Data Classification: Assessing the Role of Non-Linearity and Dimensionality Reduction," Bioinformatics, vol.20, no.17, pp. 3185-3195, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.17 , pp. 3185-3195
    • Pochet, N.1    De Smet, F.2    Suykens, J.A.K.3    De Moor, B.L.R.4
  • 3
    • 0037460957 scopus 로고    scopus 로고
    • PCA disjoint models for multiclass cancer analysis using gene expression data
    • S. Bicciato et al., "PCA Disjoint Models for Multiclass Cancer Analysis Using Gene Expression Data," Bioinformatics, vol.19, pp. 571-578, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 571-578
    • Bicciato, S.1
  • 4
    • 0742269626 scopus 로고    scopus 로고
    • Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum
    • R. Lilien and H. Farid, "Probabilistic Disease Classification of Expression-Dependent Proteomic Data from Mass Spectrometry of Human Serum," J. Computational Biology, vol.10, no.6, pp. 925-946, 2003.
    • (2003) J. Computational Biology , vol.10 , Issue.6 , pp. 925-946
    • Lilien, R.1    Farid, H.2
  • 5
    • 0036740519 scopus 로고    scopus 로고
    • Multi-class cancer classification via partial least squares with gene expression profiles
    • D.V. Nguyen and D.M. Rocke, "Multi-Class Cancer Classification via Partial Least Squares with Gene Expression Profiles," Bioinformatics, vol.18, pp. 1216-1226, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 1216-1226
    • Nguyen, D.V.1    Rocke, D.M.2
  • 6
    • 33747865502 scopus 로고    scopus 로고
    • Independent component analysis-based penalized discriminant method for tumor classification using gene expression data
    • D. Huang and D. Zheng, "Independent Component Analysis-Based Penalized Discriminant Method for Tumor Classification Using Gene Expression Data," Bioinformatics, vol.22, pp. 1855-1865, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 1855-1865
    • Huang, D.1    Zheng, D.2
  • 7
    • 57349130111 scopus 로고    scopus 로고
    • A review of independent component analysis application to microarray gene expression data
    • W. Kong, C. Vanderburg, G. Gunshin, J. Rogers, and X. Huang, "A Review of Independent Component Analysis Application to Microarray Gene Expression Data," Biotechniques, vol.45, no.5, pp. 501-520, 2008.
    • (2008) Biotechniques , vol.45 , Issue.5 , pp. 501-520
    • Kong, W.1    Vanderburg, C.2    Gunshin, G.3    Rogers, J.4    Huang, X.5
  • 9
    • 48249151183 scopus 로고    scopus 로고
    • Nonnegative matrix factorization: An analytical and interpretive tool in computational biology
    • doi:10.1371/journal.pcbi.1000029
    • K. Devarajan, "Nonnegative Matrix Factorization: An Analytical and Interpretive Tool in Computational Biology," PLoS Computational Biology, vol.4, no.7, 2008, doi:10.1371/journal.pcbi.1000029.
    • (2008) PLoS Computational Biology , vol.4 , Issue.7
    • Devarajan, K.1
  • 10
    • 34547844077 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
    • H. Kim and H. Park, "Sparse Non-Negative Matrix Factorizations via Alternating Non-Negativity-Constrained Least Squares for Microarray Data Analysis," Bioinformatics, vol.23, no.12, pp. 1495-1502, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.12 , pp. 1495-1502
    • Kim, H.1    Park, H.2
  • 12
    • 27744601822 scopus 로고    scopus 로고
    • Improving molecular cancer class discovery through sparse nonnegative matrix factorization
    • Y. Gao and G. Church, "Improving Molecular Cancer Class Discovery through Sparse Nonnegative Matrix Factorization," Bioinformatics, vol.21, no.21, pp. 3970-3975, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.21 , pp. 3970-3975
    • Gao, Y.1    Church, G.2
  • 14
    • 33749255098 scopus 로고    scopus 로고
    • On the equivalence of nonnegative matrix factorization and spectral clustering
    • C. Ding, X. He, and H. Simon, "On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering," Proc. SIAM Int'l Conf. Data Mining, pp. 606-610, 2005.
    • (2005) Proc. SIAM Int'l Conf. Data Mining , pp. 606-610
    • Ding, C.1    He, X.2    Simon, H.3
  • 16
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. Lee and H. Seung, "Learning the Parts of Objects by Non-Negative Matrix Factorization," Nature, vol.401, pp. 1788-1791, 1999.
    • (1999) Nature , vol.401 , pp. 1788-1791
    • Lee, D.1    Seung, H.2
  • 18
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. Hoyer, "Non-Negative Matrix Factorization with Sparseness Constraints," J. Machine Learning Research, vol.5, pp. 1457-1469, 2004.
    • (2004) J. Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.1
  • 22
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • A. Alon et al., "Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays," Proc. Nat'l Academy of Sciences USA, vol.96, pp. 6745-6750, 1999.
    • (1999) Proc. Nat'l Academy of Sciences USA , vol.96 , pp. 6745-6750
    • Alon, A.1
  • 23
    • 0037443891 scopus 로고    scopus 로고
    • Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection
    • N. Iizuka et al., "Oligonucleotide Microarray for Prediction of Early Intrahepatic Recurrence of Hepatocellular Carcinoma After Curative Resection," The Lancet, vol.361, pp. 923-929, 2003.
    • (2003) The Lancet , vol.361 , pp. 923-929
    • Iizuka, N.1
  • 24
    • 0037381008 scopus 로고    scopus 로고
    • Gene expression-based classification of malignant gliomas correlates better with survival than histological classification
    • C.L. Nutt et al., "Gene Expression-Based Classification of Malignant Gliomas Correlates Better with Survival than Histological Classification," Cancer Research, vol.63, no.7, pp. 1602-1607, 2003.
    • (2003) Cancer Research , vol.63 , Issue.7 , pp. 1602-1607
    • Nutt, C.L.1
  • 25
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A.J. Smola, and K.R. Mü ller, "Nonlinear Component Analysis As a Kernel Eigenvalue Problem," Neural Computation, vol.10, pp. 1299-1319, 1998.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.R.3
  • 26
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. Roweis and L. Saul, "Nonlinear Dimensionality Reduction by Locally Linear Embedding," Science, vol.290, no.5500, pp. 2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 27
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • May
    • A. Hyvärinen, "Fast and Robust Fixed-Point Algorithms for Independent Component Analysis," IEEE Trans. Neural Networks, vol.10, no.3, pp. 626-634, May 1999.
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.3 , pp. 626-634
    • Hyvärinen, A.1
  • 28
    • 34548514458 scopus 로고    scopus 로고
    • A direct formulation for sparse PCA using semidefinite programming
    • A. d'Aspremont et al., "A Direct Formulation for Sparse PCA Using Semidefinite Programming," SIAM Rev., vol.49, no.3, pp. 434-448, 2007.
    • (2007) SIAM Rev. , vol.49 , Issue.3 , pp. 434-448
    • D'Aspremont, A.1
  • 29
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for non-negative matrix factorization
    • C. Lin, "Projected Gradient Methods for Non-Negative Matrix Factorization," Neural Computation, vol.19, no.10, pp. 2756-2779, 2007.
    • (2007) Neural Computation , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.1
  • 31
    • 0037453072 scopus 로고    scopus 로고
    • A high-throughput gene expression analysis technique using competitive PCR and matrix-assisted laser desorption ionization time-of-flight MS
    • C. Ding and C. Cantor, "A High-Throughput Gene Expression Analysis Technique Using Competitive PCR and Matrix-Assisted Laser Desorption Ionization Time-of-Flight MS," Proc. Nat'l Academy of Sciences USA, vol.100, no.6, pp. 3059-3064, 2003.
    • (2003) Proc. Nat'l Academy of Sciences USA , vol.100 , Issue.6 , pp. 3059-3064
    • Ding, C.1    Cantor, C.2
  • 33
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • T.R. Golub et al., "Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring," Science, vol.286, pp. 531-537, 1999.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 36
    • 34249649636 scopus 로고    scopus 로고
    • Improved centroids estimation for the nearest shrunken centroid classifier
    • S.S. Wang and J. Zhu, "Improved Centroids Estimation for the Nearest Shrunken Centroid Classifier," Bioinformatics, vol.23, no.8, pp. 972-979, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.8 , pp. 972-979
    • Wang, S.S.1    Zhu, J.2
  • 37
    • 24044488957 scopus 로고    scopus 로고
    • Biomarker discovery in microarray gene expression data with gaussian processes
    • W. Chu, Z. Ghahramani, F. Falciani, and D. Wild, "Biomarker Discovery in Microarray Gene Expression Data with Gaussian Processes," Bioinformatics, vol.21, no.16, pp. 3385-3393, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.16 , pp. 3385-3393
    • Chu, W.1    Ghahramani, Z.2    Falciani, F.3    Wild, D.4
  • 38
    • 0031032786 scopus 로고    scopus 로고
    • Higher frequency of glutathione stransferase deletions in black children with acute lymphoblastic leukemia
    • C. Chen, Q. Liu, C. Pui, G. Rivera, J. Sandlund, R. Ribeiro, W. Evans, and M. Relling, "Higher Frequency of Glutathione STransferase Deletions in Black Children with Acute Lymphoblastic Leukemia," Blood, vol.89, no.5, pp. 1701-1707, 1997.
    • (1997) Blood , vol.89 , Issue.5 , pp. 1701-1707
    • Chen, C.1    Liu, Q.2    Pui, C.3    Rivera, G.4    Sandlund, J.5    Ribeiro, R.6    Evans, W.7    Relling, M.8
  • 39
    • 33746891176 scopus 로고    scopus 로고
    • Mitochondrial DNA mutations in human cancer
    • A. Chatterjee, E. Mambo, and D. Sidransky, "Mitochondrial DNA Mutations in Human Cancer," Oncogene, vol.25, pp. 4663-4674, 2006.
    • (2006) Oncogene , vol.25 , pp. 4663-4674
    • Chatterjee, A.1    Mambo, E.2    Sidransky, D.3
  • 40
    • 0035882029 scopus 로고    scopus 로고
    • High incidence of somatic mitochondrial DNA mutations in human ovarian carcinomas
    • V. Liu et al., "High Incidence of Somatic Mitochondrial DNA Mutations in Human Ovarian Carcinomas," Cancer Research, vol.61, pp. 5998-6001, 2001.
    • (2001) Cancer Research , vol.61 , pp. 5998-6001
    • Liu, V.1
  • 41
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumour outcome based on gene expression
    • S. Pomeroy et al., "Prediction of Central Nervous System Embryonal Tumour Outcome Based on Gene Expression," Nature, vol.415, no.24, pp. 436-439, 2002.
    • (2002) Nature , vol.415 , Issue.24 , pp. 436-439
    • Pomeroy, S.1
  • 42
    • 18144399578 scopus 로고    scopus 로고
    • MTOR-targeted therapy of cancer with rapamycin derivatives
    • S. Vignot et al., "mTOR-Targeted Therapy of Cancer with Rapamycin Derivatives," Annals of Oncology, vol.16, no.4, pp. 525-537, 2005.
    • (2005) Annals of Oncology , vol.16 , Issue.4 , pp. 525-537
    • Vignot, S.1
  • 43
    • 33645643565 scopus 로고    scopus 로고
    • A two-sample bayesian t-test for microarray data
    • doi:10.1186/1471-2105-7-126
    • R. Fox and M. Dimmic, "A Two-Sample Bayesian T-Test for Microarray Data," BMC Bioinformatics, vol.7, no.126, 2006, doi:10.1186/1471-2105-7- 126.
    • (2006) BMC Bioinformatics , vol.7 , Issue.126
    • Fox, R.1    Dimmic, M.2
  • 44
    • 33947371290 scopus 로고    scopus 로고
    • Systematic gene function prediction from gene expression data by using a fuzzy nearest-cluster method
    • DOI 10.1186/1471-2105-7-S4-S23
    • X. Li, Y. Tan, and S. Ng, "Systematic Gene Function Prediction from Gene Expression Data by Using a Fuzzy Nearest-Cluster Method," BMC Bioinformatics, vol.7, suppl. 4: S23, 2006, doi:10.1186/1471-2105-7-S4-S23. (Pubitemid 46442989)
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL.4
    • Li, X.-L.1    Tan, Y.-C.2    Ng, S.-K.3
  • 45
    • 41549168582 scopus 로고    scopus 로고
    • A simplified approach to disulfide connectivity prediction from protein sequences
    • DOI 10.1186/1471-2105-9-20
    • C. Li et al., "Major Copy Proportion Analysis of Tumor Samples Using SNP Arrays," BMC Bioinformatics, vol.9, no.204, 2008, doi:10.1186/1471- 2105-9-20. (Pubitemid 351460998)
    • (2008) BMC Bioinformatics , vol.9 , pp. 20
    • Vincent, M.1    Passerini, A.2    Labbe, M.3    Frasconi, P.4
  • 46
    • 46249117458 scopus 로고    scopus 로고
    • Classification and feature selection algorithms for multi-class CGH data
    • J. Liu, S. Ranka, and T. Kahveci, "Classification and Feature Selection Algorithms for Multi-Class CGH Data," Bioinformatics, vol.24, pp. i86-i95, 2008.
    • (2008) Bioinformatics , vol.24
    • Liu, J.1    Ranka, S.2    Kahveci, T.3
  • 47
    • 1242331294 scopus 로고    scopus 로고
    • A 'Nonnegative PCA' algorithm for independent component analysis
    • Jan.
    • M. Plumbley and E. Oja, "A 'Nonnegative PCA' Algorithm for Independent Component Analysis," IEEE Trans. Neural Networks, vol.15, no, 1, pp. 66-76, Jan. 2004.
    • (2004) IEEE Trans. Neural Networks , vol.15 , Issue.1 , pp. 66-76
    • Plumbley, M.1    Oja, E.2
  • 48
    • 0038460232 scopus 로고    scopus 로고
    • Algorithms for nonnegative independent component analysis
    • May
    • M. Plumbley, "Algorithms for Nonnegative Independent Component Analysis," IEEE Trans. Neural Networks, vol.4, no.3, pp. 534-543, May 2003.
    • (2003) IEEE Trans. Neural Networks , vol.4 , Issue.3 , pp. 534-543
    • Plumbley, M.1
  • 49
    • 0011812771 scopus 로고    scopus 로고
    • Kernel independent component analysis
    • July
    • F. Bach and M. Jordan, "Kernel Independent Component Analysis," J. Machine Learning and Research, vol.3, pp. 1-48, July 2002.
    • (2002) J. Machine Learning and Research , vol.3 , pp. 1-48
    • Bach, F.1    Jordan, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.