메뉴 건너뛰기




Volumn 26, Issue 3, 2010, Pages 290-296

Xylanase carbohydrate binding module: recent developments

Author keywords

Carbohydrate binding module; Stability; Substrate binding; Xylanase

Indexed keywords

ENDO 1,4 BETA XYLANASE; MULTIENZYME COMPLEX;

EID: 77954786911     PISSN: 10003061     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Review
Times cited : (3)

References (38)
  • 2
    • 0038353627 scopus 로고    scopus 로고
    • Cel6A, a major exoglucanase from the cellulosome of the anaerobic fungi Piromyces sp. E2 and Piromyces equi
    • Harhangi H, Freelove A, Ubhayasekera W, et al. Cel6A, a major exoglucanase from the cellulosome of the anaerobic fungi Piromyces sp. E2 and Piromyces equi. Biochim Biophys Acta, 2003, 1628: 30-39.
    • (2003) Biochim Biophys Acta , vol.1628 , pp. 30-39
    • Harhangi, H.1    Freelove, A.2    Ubhayasekera, W.3
  • 3
    • 0029824486 scopus 로고    scopus 로고
    • Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates
    • Black GW, Rixon JE, Clarke JH, et al. Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates. Biochem J, 1996, 319: 515-520.
    • (1996) Biochem J , vol.319 , pp. 515-520
    • Black, G.W.1    Rixon, J.E.2    Clarke, J.H.3
  • 4
    • 23944472099 scopus 로고    scopus 로고
    • Function of the family-9 and family-22 carbohydrate-binding modules in a modular beta-1, 3-1, 4-glucanase/xylanase derived from Clostridium stercorarium Xyn10B
    • Zhao G, Ali E, Araki R, et al. Function of the family-9 and family-22 carbohydrate-binding modules in a modular beta-1, 3-1, 4-glucanase/xylanase derived from Clostridium stercorarium Xyn10B. Biosci Biotechnol Biochem, 2005, 69: 1562-1567.
    • (2005) Biosci Biotechnol Biochem , vol.69 , pp. 1562-1567
    • Zhao, G.1    Ali, E.2    Araki, R.3
  • 5
    • 4744368323 scopus 로고    scopus 로고
    • Carbohydratebinding modules: fine-tuning polysaccharide recognition
    • Boraston A, Bolam D, Gilbert H, et al. Carbohydratebinding modules: fine-tuning polysaccharide recognition. Biochem J, 2004, 382: 769-781.
    • (2004) Biochem J , vol.382 , pp. 769-781
    • Boraston, A.1    Bolam, D.2    Gilbert, H.3
  • 6
    • 0034731387 scopus 로고    scopus 로고
    • The structural basis for the ligand specificity of family 2 carbohydrate-binding modules
    • Simpson P, Xie H, Bolam D, et al. The structural basis for the ligand specificity of family 2 carbohydrate-binding modules. J Biol Chem, 2000, 275: 41137-41142.
    • (2000) J Biol Chem , vol.275 , pp. 41137-41142
    • Simpson, P.1    Xie, H.2    Bolam, D.3
  • 7
    • 0034646192 scopus 로고    scopus 로고
    • Structure and binding specificity of the second N-terminal cellulose-binding domain from Cellulomonas fimi endoglucanase C
    • Brun E, Johnson P, Creagh A, et al. Structure and binding specificity of the second N-terminal cellulose-binding domain from Cellulomonas fimi endoglucanase C. Biochemistry, 2000, 39: 2445-2458.
    • (2000) Biochemistry , vol.39 , pp. 2445-2458
    • Brun, E.1    Johnson, P.2    Creagh, A.3
  • 8
    • 0034620514 scopus 로고    scopus 로고
    • Solution structure of the CBM10 cellulose binding module from Pseudomonas xylanase A
    • Raghothama S, Simpson P, Szabo L, et al. Solution structure of the CBM10 cellulose binding module from Pseudomonas xylanase A. Biochemistry, 2000, 39: 978-984.
    • (2000) Biochemistry , vol.39 , pp. 978-984
    • Raghothama, S.1    Simpson, P.2    Szabo, L.3
  • 9
    • 77954771663 scopus 로고    scopus 로고
    • Molecular evolution of xylanase
    • Liu LW, Qin TC, Wang B, et al. Molecular evolution of xylanase. J Food Sci Biotech, 2007, 26: 110-118.
    • (2007) J Food Sci Biotech , vol.26 , pp. 110-118
    • Liu, L.W.1    Qin, T.C.2    Wang, B.3
  • 10
    • 0035967536 scopus 로고    scopus 로고
    • Crystal structures of the family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A in native and ligand-bound forms
    • Notenboom V, Boraston A, Kilburn D, et al. Crystal structures of the family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A in native and ligand-bound forms. Biochemistry, 2001, 40: 6248-6256.
    • (2001) Biochemistry , vol.40 , pp. 6248-6256
    • Notenboom, V.1    Boraston, A.2    Kilburn, D.3
  • 11
    • 0035967513 scopus 로고    scopus 로고
    • Binding specificity and thermodynamics of a family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A
    • Boraston A, Creagh A, Alam M, et al. Binding specificity and thermodynamics of a family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A. Biochemistry, 2001, 40: 6240-6247.
    • (2001) Biochemistry , vol.40 , pp. 6240-6247
    • Boraston, A.1    Creagh, A.2    Alam, M.3
  • 12
    • 0036304519 scopus 로고    scopus 로고
    • Influence of the transposition of the thermostabilizing domain of Clostridium thermocellum xylanase (XynX) on xylan binding and thermostabilization
    • Shin E, Yang M, Jung K, et al. Influence of the transposition of the thermostabilizing domain of Clostridium thermocellum xylanase (XynX) on xylan binding and thermostabilization. Appl Envir Microbiol, 2002, 68: 3496-3501.
    • (2002) Appl Envir Microbiol , vol.68 , pp. 3496-3501
    • Shin, E.1    Yang, M.2    Jung, K.3
  • 13
    • 0037450178 scopus 로고    scopus 로고
    • Fusion of family VI cellulose binding domains to Bacillus halodurans xylanase increases its catalytic activity and substrate-binding capacity to insoluble xylan
    • Mangala SL, Kittur FS, Nishimoto M, et al. Fusion of family VI cellulose binding domains to Bacillus halodurans xylanase increases its catalytic activity and substrate-binding capacity to insoluble xylan. J Mol Catal B-Enzym, 2003, 21: 221-230.
    • (2003) J Mol Catal B-Enzym , vol.21 , pp. 221-230
    • Mangala, S.L.1    Kittur, F.S.2    Nishimoto, M.3
  • 14
    • 0032793044 scopus 로고    scopus 로고
    • Functional analysis of the carbohydrate-binding domains of Erwinia chrysanthemi Cel5 (Endoglucanase Z) and an Escherichia coli putative chitinase
    • Simpson H, Barras F. Functional analysis of the carbohydrate-binding domains of Erwinia chrysanthemi Cel5 (Endoglucanase Z) and an Escherichia coli putative chitinase. J Bacteriol, 1999, 181: 4611-4616.
    • (1999) J Bacteriol , vol.181 , pp. 4611-4616
    • Simpson, H.1    Barras, F.2
  • 15
    • 77954763517 scopus 로고    scopus 로고
    • The activity of native and mutated cellobiohydrolase I from Trichoderma reesei
    • Reinikainen T, Teleman O. The activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Proteins, 1999, 22: 392-403.
    • (1999) Proteins , vol.22 , pp. 392-403
    • Reinikainen, T.1    Teleman, O.2
  • 16
    • 0034493730 scopus 로고    scopus 로고
    • Analysis of binding of the family 2a carbohydrate-binding module from Cellulomonas fimi xylanase 10A to cellulose: specificity and identification of functionally important amino acid residues
    • McLean B, Bray M, Boraston A, et al. Analysis of binding of the family 2a carbohydrate-binding module from Cellulomonas fimi xylanase 10A to cellulose: specificity and identification of functionally important amino acid residues. Protein Eng, 2000, 13: 801-809.
    • (2000) Protein Eng , vol.13 , pp. 801-809
    • McLean, B.1    Bray, M.2    Boraston, A.3
  • 17
    • 0032774370 scopus 로고    scopus 로고
    • A single domain thermophilic xylanase can bind insoluble xylan: evidence for surface aromatic clusters
    • Connerton I, Cummings N, Harris G, et al. A single domain thermophilic xylanase can bind insoluble xylan: evidence for surface aromatic clusters. Biochim Biophys Acta, 1999, 1433: 110-121.
    • (1999) Biochim Biophys Acta , vol.1433 , pp. 110-121
    • Connerton, I.1    Cummings, N.2    Harris, G.3
  • 18
    • 0034620561 scopus 로고    scopus 로고
    • Trp22, Trp24, and Tyr8 play a pivotal role in the binding of the family 10 cellulose-binding module from Pseudomonas xylanase A to insoluble ligands
    • Ponyi T, Szabo L, Nagy T, et al. Trp22, Trp24, and Tyr8 play a pivotal role in the binding of the family 10 cellulose-binding module from Pseudomonas xylanase A to insoluble ligands. Biochemistry, 2000, 39: 985-991.
    • (2000) Biochemistry , vol.39 , pp. 985-991
    • Ponyi, T.1    Szabo, L.2    Nagy, T.3
  • 19
    • 1642523638 scopus 로고    scopus 로고
    • Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C: how variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases
    • Pell G, Szabo L, Charnock S, et al. Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C: how variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases. J Biol Chem, 2004, 279: 11777-11788.
    • (2004) J Biol Chem , vol.279 , pp. 11777-11788
    • Pell, G.1    Szabo, L.2    Charnock, S.3
  • 20
    • 33847273166 scopus 로고    scopus 로고
    • Direct demonstration of the flexibility of the glycosylated proline-threonine linker in the Cellulomonas fimi xylanase cex through NMR spectroscopic analysis
    • Poon D, Withers S, McIntosh L. Direct demonstration of the flexibility of the glycosylated proline-threonine linker in the Cellulomonas fimi xylanase cex through NMR spectroscopic analysis. J Biol Chem, 2007, 282: 2091-2100.
    • (2007) J Biol Chem , vol.282 , pp. 2091-2100
    • Poon, D.1    Withers, S.2    McIntosh, L.3
  • 21
    • 20944432716 scopus 로고    scopus 로고
    • Evaluation of a novel bifunctional xylanase-cellulase constructed by gene fusion
    • An J, Kim Y, Lim W, et al. Evaluation of a novel bifunctional xylanase-cellulase constructed by gene fusion. Enzyme Microb Technol, 2005, 36: 989-995.
    • (2005) Enzyme Microb Technol , vol.36 , pp. 989-995
    • An, J.1    Kim, Y.2    Lim, W.3
  • 22
    • 33746543618 scopus 로고    scopus 로고
    • Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced β-glucanase and xylanase expressed in Escherichia coli
    • Lu P, Feng M, Li W, et al. Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced β-glucanase and xylanase expressed in Escherichia coli. FEMS Microbiol Lett, 2006, 261: 224-230.
    • (2006) FEMS Microbiol Lett , vol.261 , pp. 224-230
    • Lu, P.1    Feng, M.2    Li, W.3
  • 23
    • 44649144487 scopus 로고    scopus 로고
    • Bifunctional enhancement of a betaglucanase- xylanase fusion enzyme by optimization of peptide linkers
    • Lu P, Feng M. Bifunctional enhancement of a betaglucanase- xylanase fusion enzyme by optimization of peptide linkers. Appl Microbiol Biotechnol, 2008, 79: 579-587.
    • (2008) Appl Microbiol Biotechnol , vol.79 , pp. 579-587
    • Lu, P.1    Feng, M.2
  • 24
    • 0030861309 scopus 로고    scopus 로고
    • Xylanase XynA from the hyperthermophilic bacterium Thermotoga maritima: structure and stability of the recombinant enzyme and its isolated cellulose-binding domain
    • Wassenberg D, Schurig H, Liebl W, et al. Xylanase XynA from the hyperthermophilic bacterium Thermotoga maritima: structure and stability of the recombinant enzyme and its isolated cellulose-binding domain. Protein Sci, 1997, 6: 1718-1726.
    • (1997) Protein Sci , vol.6 , pp. 1718-1726
    • Wassenberg, D.1    Schurig, H.2    Liebl, W.3
  • 25
    • 33745513642 scopus 로고    scopus 로고
    • Improvement of the thermostability of xylanase by N-terminus replacement
    • Yang HM, Meng K, Luo HY, et al. Improvement of the thermostability of xylanase by N-terminus replacement. Chin J Biotech, 2006, 22: 26-32.
    • (2006) Chin J Biotech , vol.22 , pp. 26-32
    • Yang, H.M.1    Meng, K.2    Luo, H.Y.3
  • 26
    • 66049089304 scopus 로고    scopus 로고
    • The construction of Thermotoga maritima endoglucanase Cel12B fused with CBD and the characterization of chimeric enzyme
    • LI XQ, Shao WL. The construction of Thermotoga maritima endoglucanase Cel12B fused with CBD and the characterization of chimeric enzyme. Acta Microbiol Sin, 2006, 46: 726-729.
    • (2006) Acta Microbiol Sin , vol.46 , pp. 726-729
    • LI, X.Q.1    Shao, W.L.2
  • 27
    • 0035807428 scopus 로고    scopus 로고
    • Construction of a chimeric xylanase using multidomain enzymes from Neocallimastix frontalis
    • Mesta L, Rascle C, Durandm R, et al. Construction of a chimeric xylanase using multidomain enzymes from Neocallimastix frontalis. Enzyme Microb Technol, 2001, 29: 456-463.
    • (2001) Enzyme Microb Technol , vol.29 , pp. 456-463
    • Mesta, L.1    Rascle, C.2    Durandm, R.3
  • 28
    • 0034653516 scopus 로고    scopus 로고
    • The thermostabilizing domain, XynA, of Caldibacillus cellulovorans xylanase is a xylan binding domain
    • Sunna A, Gibbs M, Bergquist P. The thermostabilizing domain, XynA, of Caldibacillus cellulovorans xylanase is a xylan binding domain. Biochem J, 2000, 346: 583-586.
    • (2000) Biochem J , vol.346 , pp. 583-586
    • Sunna, A.1    Gibbs, M.2    Bergquist, P.3
  • 29
    • 0034595226 scopus 로고    scopus 로고
    • The X6 "thermostabilizing" domains of xylanases are carbohydratebinding modules: structure and biochemistry of the Clostridium thermocellum X6b domain
    • Charnock S, Bolam D, Turkenburg J, et al. The X6 "thermostabilizing" domains of xylanases are carbohydratebinding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. Biochemistry, 2000, 39: 5013-5021.
    • (2000) Biochemistry , vol.39 , pp. 5013-5021
    • Charnock, S.1    Bolam, D.2    Turkenburg, J.3
  • 30
    • 4544366265 scopus 로고    scopus 로고
    • Probing the stability of the modular family 10 xylanase from Rhodothermus marinus
    • Abou-Hachem M, Olsson F, Karlsson E. Probing the stability of the modular family 10 xylanase from Rhodothermus marinus. Extremophiles, 2003, 7: 483-491.
    • (2003) Extremophiles , vol.7 , pp. 483-491
    • Abou-Hachem, M.1    Olsson, F.2    Karlsson, E.3
  • 31
    • 33846127494 scopus 로고    scopus 로고
    • Fusion of carbohydrate binding modules from Thermotoga neapolitana with a family 10 xylanase from Bacillus halodurans S7
    • Mamo G, Hatti-Kaul R, Mattiasson B. Fusion of carbohydrate binding modules from Thermotoga neapolitana with a family 10 xylanase from Bacillus halodurans S7. Extremophiles, 2007, 11: 169-177.
    • (2007) Extremophiles , vol.11 , pp. 169-177
    • Mamo, G.1    Hatti-Kaul, R.2    Mattiasson, B.3
  • 32
    • 4444244925 scopus 로고    scopus 로고
    • The N-terminal family 22 carbohydrate-binding module of xylanase 10B of Clostridium themocellum is not a thermostabilizing domain
    • Dias F, Goyal A, Gilbert H, et al. The N-terminal family 22 carbohydrate-binding module of xylanase 10B of Clostridium themocellum is not a thermostabilizing domain. FEMS Microbiol Lett, 2004, 238: 71-78.
    • (2004) FEMS Microbiol Lett , vol.238 , pp. 71-78
    • Dias, F.1    Goyal, A.2    Gilbert, H.3
  • 33
    • 20444388735 scopus 로고    scopus 로고
    • Improvement of the thermostability and catalytic activity of a mesophilic family 11 xylanase by N-terminus replacement
    • Sun J, Liu M, Xu Y, et al. Improvement of the thermostability and catalytic activity of a mesophilic family 11 xylanase by N-terminus replacement. Pro Exp Puri, 2005, 42: 122-130.
    • (2005) Pro Exp Puri , vol.42 , pp. 122-130
    • Sun, J.1    Liu, M.2    Xu, Y.3
  • 34
    • 9644284527 scopus 로고    scopus 로고
    • A novel model to calculate dipeptides responsible for optimum temperature in F/10 xylanase
    • Liu L, Wang M, Shao W, et al. A novel model to calculate dipeptides responsible for optimum temperature in F/10 xylanase. Process Biochem, 2005, 40: 1389-1394.
    • (2005) Process Biochem , vol.40 , pp. 1389-1394
    • Liu, L.1    Wang, M.2    Shao, W.3
  • 35
    • 29244452637 scopus 로고    scopus 로고
    • Computational analysis of di-peptides correlated with the optimal temperature in G/11 xylanase
    • Liu L, Dong H, Wang S, et al. Computational analysis of di-peptides correlated with the optimal temperature in G/11 xylanase. Process Biochem, 2006, 41: 305-311.
    • (2006) Process Biochem , vol.41 , pp. 305-311
    • Liu, L.1    Dong, H.2    Wang, S.3
  • 36
    • 66049105477 scopus 로고    scopus 로고
    • Rational pH-engineering of the thermostable xylanase based on computational model
    • Liu L, Wang B, Chen H, et al. Rational pH-engineering of the thermostable xylanase based on computational model. Process Biochem, 2009, 44: 912-915.
    • (2009) Process Biochem , vol.44 , pp. 912-915
    • Liu, L.1    Wang, B.2    Chen, H.3
  • 37
    • 33746921169 scopus 로고    scopus 로고
    • Purification and characterization of a novel bifunctional xylanase, xynIII, isolated from Aspergillus niger A-25
    • Chen H, Yan X, Liu X, et al. Purification and characterization of a novel bifunctional xylanase, xynIII, isolated from Aspergillus niger A-25. J Microbiol Biotechnol, 2006, 16: 1132-1138.
    • (2006) J Microbiol Biotechnol , vol.16 , pp. 1132-1138
    • Chen, H.1    Yan, X.2    Liu, X.3
  • 38
    • 77954808006 scopus 로고    scopus 로고
    • The fusion-PCR added self-extension process
    • Liu LW, Yang HY, Hu Y, et al. The fusion-PCR added self-extension process. Chin Agric Sci Bull, 2009, 25: 96-98.
    • (2009) Chin Agric Sci Bull , vol.25 , pp. 96-98
    • Liu, L.W.1    Yang, H.Y.2    Hu, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.