-
1
-
-
7544241259
-
-
10.1021/nl0487267
-
T. Mårtensson, C. P. T. Svesson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, Nano Lett. 4, 1987 (2004). 10.1021/nl0487267
-
(2004)
Nano Lett.
, vol.4
, pp. 1987
-
-
Mårtensson, T.1
Svesson, C.P.T.2
Wacaser, B.A.3
Larsson, M.W.4
Seifert, W.5
Deppert, K.6
Gustafsson, A.7
Wallenberg, L.R.8
Samuelson, L.9
-
2
-
-
58449093572
-
-
10.1021/nl802398j
-
K. Tomioka, J. Motohisa, S. Hara, and T. Fukui, Nano Lett. 8, 3475 (2008). 10.1021/nl802398j
-
(2008)
Nano Lett.
, vol.8
, pp. 3475
-
-
Tomioka, K.1
Motohisa, J.2
Hara, S.3
Fukui, T.4
-
3
-
-
65549159341
-
-
10.1088/0957-4484/20/14/145302
-
K. Tomioka, Y. Kobayashi, J. Motohisa, S. Hara, and T. Fukui, Nanotechnology 20, 145302 (2009). 10.1088/0957-4484/20/14/145302
-
(2009)
Nanotechnology
, vol.20
, pp. 145302
-
-
Tomioka, K.1
Kobayashi, Y.2
Motohisa, J.3
Hara, S.4
Fukui, T.5
-
5
-
-
0000886166
-
-
10.1103/PhysRevB.34.6041
-
M. A. Olmstead, R. D. Bringans, R. I. G. Uhrberg, and R. Z. Bachrach, Phys. Rev. B 34, 6041 (1986). 10.1103/PhysRevB.34.6041
-
(1986)
Phys. Rev. B
, vol.34
, pp. 6041
-
-
Olmstead, M.A.1
Bringans, R.D.2
Uhrberg, R.I.G.3
Bachrach, R.Z.4
-
6
-
-
0000041526
-
-
10.1103/PhysRevB.35.3945
-
R. I. G. Uhrberg, R. D. Bringans, M. A. Olmstead, R. Z. Bachrach, and J. E. Northrup, Phys. Rev. B 35, 3945 (1987). 10.1103/PhysRevB.35.3945
-
(1987)
Phys. Rev. B
, vol.35
, pp. 3945
-
-
Uhrberg, R.I.G.1
Bringans, R.D.2
Olmstead, M.A.3
Bachrach, R.Z.4
Northrup, J.E.5
-
7
-
-
0001592530
-
-
10.1103/PhysRevB.36.7715
-
J. R. Patel, J. A. Golovchenko, P. E. Freeland, and H.-J. Gossmann, Phys. Rev. B 36, 7715 (1987). 10.1103/PhysRevB.36.7715
-
(1987)
Phys. Rev. B
, vol.36
, pp. 7715
-
-
Patel, J.R.1
Golovchenko, J.A.2
Freeland, P.E.3
Gossmann, H.-J.4
-
8
-
-
3342910713
-
-
10.1103/PhysRevLett.60.116
-
R. S. Becker, B. S. Swartzentruber, J. S. Vickers, M. S. Hybertsen, and S. G. Louie, Phys. Rev. Lett. 60, 116 (1988). 10.1103/PhysRevLett.60.116
-
(1988)
Phys. Rev. Lett.
, vol.60
, pp. 116
-
-
Becker, R.S.1
Swartzentruber, B.S.2
Vickers, J.S.3
Hybertsen, M.S.4
Louie, S.G.5
-
10
-
-
0007634587
-
-
10.1103/PhysRevB.37.2766
-
M. Copel and R. M. Tromp, Phys. Rev. B 37, 2766 (1988). 10.1103/PhysRevB.37.2766
-
(1988)
Phys. Rev. B
, vol.37
, pp. 2766
-
-
Copel, M.1
Tromp, R.M.2
-
13
-
-
0030243347
-
-
10.1016/0039-6028(96)00722-4
-
C. Cheng and K. Kunc, Surf. Sci. 365, 383 (1996). 10.1016/0039-6028(96) 00722-4
-
(1996)
Surf. Sci.
, vol.365
, pp. 383
-
-
Cheng, C.1
Kunc, K.2
-
14
-
-
33744569390
-
-
10.1007/s002570050502
-
C. Cheng and K. Kunc, Z. Phys. B 104, 643 (1997). 10.1007/s002570050502
-
(1997)
Z. Phys. B
, vol.104
, pp. 643
-
-
Cheng, C.1
Kunc, K.2
-
15
-
-
84956095137
-
-
10.1209/0295-5075/21/6/009
-
E. Kaxiras, Europhys. Lett. 21, 685 (1993). 10.1209/0295-5075/21/6/009
-
(1993)
Europhys. Lett.
, vol.21
, pp. 685
-
-
Kaxiras, E.1
-
20
-
-
57749107549
-
-
10.1103/PhysRevB.78.235301
-
V. G. Dubrovskii, N. V. Sibirev, J. C. Harmand, and F. Glas, Phys. Rev. B 78, 235301 (2008). 10.1103/PhysRevB.78.235301
-
(2008)
Phys. Rev. B
, vol.78
, pp. 235301
-
-
Dubrovskii, V.G.1
Sibirev, N.V.2
Harmand, J.C.3
Glas, F.4
-
21
-
-
67650340124
-
-
10.1103/PhysRevB.79.153406
-
T. Akiyama, Y. Haneda, K. Nakamura, and T. Ito, Phys. Rev. B 79, 153406 (2009). 10.1103/PhysRevB.79.153406
-
(2009)
Phys. Rev. B
, vol.79
, pp. 153406
-
-
Akiyama, T.1
Haneda, Y.2
Nakamura, K.3
Ito, T.4
-
22
-
-
66249139566
-
-
10.1103/PhysRevB.79.165118
-
S. Cahangirov and S. Ciraci, Phys. Rev. B 79, 165118 (2009). 10.1103/PhysRevB.79.165118
-
(2009)
Phys. Rev. B
, vol.79
, pp. 165118
-
-
Cahangirov, S.1
Ciraci, S.2
-
23
-
-
10644250257
-
-
10.1103/PhysRev.136.B864
-
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). 10.1103/PhysRev.136.B864
-
(1964)
Phys. Rev.
, vol.136
, pp. 864
-
-
Hohenberg, P.1
Kohn, W.2
-
28
-
-
33748419664
-
-
10.1103/PhysRevB.74.125405
-
H. Koga and T. Ohno, Phys. Rev. B 74, 125405 (2006). 10.1103/PhysRevB.74. 125405
-
(2006)
Phys. Rev. B
, vol.74
, pp. 125405
-
-
Koga, H.1
Ohno, T.2
-
29
-
-
0042113153
-
-
10.1103/PhysRev.140.A1133
-
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). 10.1103/PhysRev.140.A1133
-
(1965)
Phys. Rev.
, vol.140
, pp. 1133
-
-
Kohn, W.1
Sham, L.J.2
-
31
-
-
84913417435
-
-
10.1116/1.573160
-
K. Takayanagi, Y. Tanishiro, M. Takahashi, and S. Takahashi, J. Vac. Sci. Technol. A 3, 1502 (1985). 10.1116/1.573160
-
(1985)
J. Vac. Sci. Technol. A
, vol.3
, pp. 1502
-
-
Takayanagi, K.1
Tanishiro, Y.2
Takahashi, M.3
Takahashi, S.4
-
32
-
-
0000383668
-
-
10.1103/PhysRevB.42.7230
-
P. Mårtensson, G. Meyer, N. M. Amer, E. Kaxiras, and K. C. Pandey, Phys. Rev. B 42, 7230 (1990). 10.1103/PhysRevB.42.7230
-
(1990)
Phys. Rev. B
, vol.42
, pp. 7230
-
-
Mårtensson, P.1
Meyer, G.2
Amer, N.M.3
Kaxiras, E.4
Pandey, K.C.5
-
34
-
-
26144450583
-
-
10.1103/PhysRevB.23.5048
-
J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). 10.1103/PhysRevB.23.5048
-
(1981)
Phys. Rev. B
, vol.23
, pp. 5048
-
-
Perdew, J.P.1
Zunger, A.2
-
35
-
-
3643072613
-
-
10.1103/PhysRevLett.47.1913
-
K. C. Pandey, Phys. Rev. Lett. 47, 1913 (1981). 10.1103/PhysRevLett.47. 1913
-
(1981)
Phys. Rev. Lett.
, vol.47
, pp. 1913
-
-
Pandey, K.C.1
-
36
-
-
77954741949
-
-
As argued in Sec. , the energetics of the Si(111)-As surface is mostly governed by As-Si bond orientation. Given the large variations in this orientation, covalent contributions are likely to outweigh vibrational and entropy ones. A similar argument holds for the In-adatom structures examined here, which differ in interlayer covalent interactions (Sec. ).
-
As argued in Sec., the energetics of the Si(111)-As surface is mostly governed by As-Si bond orientation. Given the large variations in this orientation, covalent contributions are likely to outweigh vibrational and entropy ones. A similar argument holds for the In-adatom structures examined here, which differ in interlayer covalent interactions (Sec.).
-
-
-
-
39
-
-
77954732014
-
-
For the faulted and unfaulted models, T4 is found to be 0.05 and 0.03 eV per reconstruction cell, respectively, lower in energy than H3.
-
For the faulted and unfaulted models, T 4 is found to be 0.05 and 0.03 eV per reconstruction cell, respectively, lower in energy than H 3.
-
-
-
|