메뉴 건너뛰기




Volumn 25, Issue 2, 2010, Pages 134-148

Classified real-time flood forecasting by coupling fuzzy clustering and neural network

Author keywords

Conceptual hydrological model; Flood classification; Fuzzy clustering; Neural networks; Real time flood forecasting

Indexed keywords


EID: 77954368155     PISSN: 10016279     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1001-6279(10)60033-9     Document Type: Article
Times cited : (38)

References (44)
  • 1
    • 0018441920 scopus 로고
    • A Physically based, variable contributing area model of basin hydrology
    • Beven K.J., Kirkby M.J. A Physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 1979, 24:43-69.
    • (1979) Hydrological Sciences Bulletin , vol.24 , pp. 43-69
    • Beven, K.J.1    Kirkby, M.J.2
  • 2
    • 0027009437 scopus 로고
    • The future of distributed models: Model calibration and uncertainty prediction
    • Beven K.J., Binley A.M. The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes 1992, 6:279-298.
    • (1992) Hydrological Processes , vol.6 , pp. 279-298
    • Beven, K.J.1    Binley, A.M.2
  • 4
    • 0036697650 scopus 로고    scopus 로고
    • Neural networks and non-parameters methods for improveing real-time flood forecasting through conceptual hydrological models
    • Brath A., Montanari A., Toth E. Neural networks and non-parameters methods for improveing real-time flood forecasting through conceptual hydrological models. Hydrology & Earth System Sciences 2002, 6:627-640.
    • (2002) Hydrology & Earth System Sciences , vol.6 , pp. 627-640
    • Brath, A.1    Montanari, A.2    Toth, E.3
  • 5
    • 0032961025 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • Campolo M., Andreussi P. River flood forecasting with a neural network model. Water Resources 1999, 35:1191-1197.
    • (1999) Water Resources , vol.35 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2
  • 7
    • 84943231434 scopus 로고    scopus 로고
    • Real-time prediction of water stage with artificial neural network approach
    • 715
    • Chau K.W., Cheng C.T. Real-time prediction of water stage with artificial neural network approach. Lecture Notes in Artificial Intelligence 2002, 2557:715. 715.
    • (2002) Lecture Notes in Artificial Intelligence , vol.2557 , pp. 715
    • Chau, K.W.1    Cheng, C.T.2
  • 11
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson C.W. Hydrological modelling using artificial neural networks. Progress in Physical Geography 2001, 25:80-108.
    • (2001) Progress in Physical Geography , vol.25 , pp. 80-108
    • Dawson, C.W.1
  • 13
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
    • Dunn J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics 1973, 3:32-57.
    • (1973) Journal of Cybernetics , vol.3 , pp. 32-57
    • Dunn, J.C.1
  • 15
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • Govindaraju R.S. Artificial neural networks in hydrology. I: Preliminary concepts. Journal of Hydrologic Engineering 2000, 5:115-123.
    • (2000) Journal of Hydrologic Engineering , vol.5 , pp. 115-123
    • Govindaraju, R.S.1
  • 16
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • Govindaraju R.S. Artificial neural networks in hydrology. II: Hydrologic applications. Journal of Hydrologic Engineering 2000, 5:124-137.
    • (2000) Journal of Hydrologic Engineering , vol.5 , pp. 124-137
    • Govindaraju, R.S.1
  • 18
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K.L., Gupta H.V., Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 1995, 31:2517-2530.
    • (1995) Water Resources Research , vol.31 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 19
    • 0035370678 scopus 로고    scopus 로고
    • Quantitative flood forecasting using multisensor data and neural networks
    • Kim G., Barros A.P. Quantitative flood forecasting using multisensor data and neural networks. Journal of Hydrology 2001, 246:45-62.
    • (2001) Journal of Hydrology , vol.246 , pp. 45-62
    • Kim, G.1    Barros, A.P.2
  • 21
    • 13944276931 scopus 로고    scopus 로고
    • Generality of hydrology model both home and abroad
    • Liu J.Q., Lu J.H. Generality of hydrology model both home and abroad. Journal of China Hydrology 1996, 6:4-8.
    • (1996) Journal of China Hydrology , vol.6 , pp. 4-8
    • Liu, J.Q.1    Lu, J.H.2
  • 22
    • 77954364622 scopus 로고    scopus 로고
    • Forecasting flood in Hanjiang river by using the method of fuzzy clustering
    • Liu L.P., Chen J., Zhang L.P. Forecasting flood in Hanjiang river by using the method of fuzzy clustering. Journal of China Hydrology 2006, 26:60-62.
    • (2006) Journal of China Hydrology , vol.26 , pp. 60-62
    • Liu, L.P.1    Chen, J.2    Zhang, L.P.3
  • 23
    • 0242306014 scopus 로고    scopus 로고
    • A real time hydrological forecasting system using a fuzzy clustering approach
    • Luchetta A., Manetti S. A real time hydrological forecasting system using a fuzzy clustering approach. Computers and Geosciences 2003, 29:1111-1117.
    • (2003) Computers and Geosciences , vol.29 , pp. 1111-1117
    • Luchetta, A.1    Manetti, S.2
  • 24
    • 21044457700 scopus 로고
    • Research on a runoff yield reflecting excess infiltration and excess storage simultaneously
    • Luo W.S., Hu C.Q., Han J.T. Research on a runoff yield reflecting excess infiltration and excess storage simultaneously. Journal of Soil and Water Conservation 1992, 6:6-13.
    • (1992) Journal of Soil and Water Conservation , vol.6 , pp. 6-13
    • Luo, W.S.1    Hu, C.Q.2    Han, J.T.3
  • 25
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier H., Dandy C. Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications. Environ Mod Soft 2000, 15:101-124.
    • (2000) Environ Mod Soft , vol.15 , pp. 101-124
    • Maier, H.1    Dandy, C.2
  • 27
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns A.W., Hall M.J. Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal 1996, 41:399-418.
    • (1996) Hydrological Sciences Journal , vol.41 , pp. 399-418
    • Minns, A.W.1    Hall, M.J.2
  • 29
    • 0035480406 scopus 로고    scopus 로고
    • Multi-model data fusion for hydrological forecasting
    • See L., Abrahart R.J. Multi-model data fusion for hydrological forecasting. Computer & Geosciences 2001, 27:987-994.
    • (2001) Computer & Geosciences , vol.27 , pp. 987-994
    • See, L.1    Abrahart, R.J.2
  • 30
    • 44449096586 scopus 로고    scopus 로고
    • Flow Routing in Open Channels: Some Recent Advances
    • Singh V. P. 2004, Flow Routing in Open Channels: Some Recent Advances. Proceedings of River Flow: pp. 1-23.
    • (2004) Proceedings of River Flow , pp. 1-23
    • Singh, V.P.1
  • 31
    • 0008275576 scopus 로고
    • An analysis of runoff structure about several Japanese rivers
    • Sugawara M. An analysis of runoff structure about several Japanese rivers. Japanese Geophysics 1961, 2:10-17.
    • (1961) Japanese Geophysics , vol.2 , pp. 10-17
    • Sugawara, M.1
  • 32
    • 0030483015 scopus 로고    scopus 로고
    • The ARNO rainfall-runoff model
    • Todinni E. The ARNO rainfall-runoff model. Journal of Hydrology 1996, 175:339-382.
    • (1996) Journal of Hydrology , vol.175 , pp. 339-382
    • Todinni, E.1
  • 35
    • 0035340544 scopus 로고    scopus 로고
    • A non-linear combination of the forecast of rainfall-runoff models by first order Takagi-Sugeno fuzzy system
    • Xiong L., Asaad Y., Shamseldin Y., O'Connor K.M. A non-linear combination of the forecast of rainfall-runoff models by first order Takagi-Sugeno fuzzy system. Journal of Hydrology 2001, 254:196-217.
    • (2001) Journal of Hydrology , vol.254 , pp. 196-217
    • Xiong, L.1    Asaad, Y.2    Shamseldin, Y.3    O'Connor, K.M.4
  • 37
    • 0022266168 scopus 로고
    • Markov flow models and the flood warning problem
    • Yakowitz S.J. Markov flow models and the flood warning problem. Water Resources Research 1985, 21:81-88.
    • (1985) Water Resources Research , vol.21 , pp. 81-88
    • Yakowitz, S.J.1
  • 43
    • 0029407860 scopus 로고
    • Fuzzy neural networks for nonlinear systems modeling
    • Zhang J., Morris A. Fuzzy neural networks for nonlinear systems modeling. Proceeding Inst Elect Eng 1995, 142:551-561.
    • (1995) Proceeding Inst Elect Eng , vol.142 , pp. 551-561
    • Zhang, J.1    Morris, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.