메뉴 건너뛰기




Volumn 5211 LNAI, Issue PART 1, 2008, Pages 489-504

Improving k-nearest neighbour classification with distance functions based on receiver operating characteristics

Author keywords

Classification; Feature weighting; Gene expression; K Nearest neighbour; Receiver Operating Characteristics (ROC)

Indexed keywords

CLASSIFIERS; DATABASE SYSTEMS; GENE EXPRESSION; MULTILAYER NEURAL NETWORKS; PROBABILITY DENSITY FUNCTION; ROBOT LEARNING; SUPPORT VECTOR MACHINES;

EID: 56049105206     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-87479-9_50     Document Type: Conference Paper
Times cited : (20)

References (37)
  • 1
    • 0036141951 scopus 로고    scopus 로고
    • Finding genes in the C2C12 osteogenic pathway by k-nearest-neighbor classification of expression data
    • Theilhaber, J., et al.: Finding genes in the C2C12 osteogenic pathway by k-nearest-neighbor classification of expression data. Genome Research 12(1), 165-176 (2002)
    • (2002) Genome Research , vol.12 , Issue.1 , pp. 165-176
    • Theilhaber, J.1
  • 2
    • 25444446813 scopus 로고    scopus 로고
    • Evaluation of normalization methods for cDNA microarray data by k-NN classification
    • Wu, W., Xing, E., Mian, I., Bissell, M.: Evaluation of normalization methods for cDNA microarray data by k-NN classification. BMC Bioinformatics 6(191), 1-21 (2005)
    • (2005) BMC Bioinformatics , vol.6 , Issue.191 , pp. 1-21
    • Wu, W.1    Xing, E.2    Mian, I.3    Bissell, M.4
  • 5
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29-36 (1982)
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 6
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30(7), 1145-1159 (1997)
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 7
    • 85146422424 scopus 로고
    • A practical approach to feature selection
    • Kira, K., Rendell, L.: A practical approach to feature selection. In: Proc. of ICML, pp. 249-256 (1992)
    • (1992) Proc. of ICML , pp. 249-256
    • Kira, K.1    Rendell, L.2
  • 8
    • 84994684889 scopus 로고    scopus 로고
    • Salzberg, S.: Distance metrics for instance-based Learning. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1991. LNCS, 542, pp. 399-408. Springer, Heidelberg (1991)
    • Salzberg, S.: Distance metrics for instance-based Learning. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1991. LNCS, vol. 542, pp. 399-408. Springer, Heidelberg (1991)
  • 9
    • 84992726552 scopus 로고    scopus 로고
    • Kononenko, I.: Estimating attributes: Analysis and extensions of Relief. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS. 784, pp. 171-182. Springer, Heidelberg (1994)
    • Kononenko, I.: Estimating attributes: Analysis and extensions of Relief. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS. vol. 784, pp. 171-182. Springer, Heidelberg (1994)
  • 10
    • 9444294778 scopus 로고    scopus 로고
    • From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering
    • Klein, D., Kamvar, S.D., Manning, C.D.: From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In: Proc. of ICML, pp. 307-314 (2002)
    • (2002) Proc. of ICML , pp. 307-314
    • Klein, D.1    Kamvar, S.D.2    Manning, C.D.3
  • 12
    • 84949950595 scopus 로고    scopus 로고
    • Text categorization using weight-adjusted nearest-neighbor classification
    • Hong Kong. China, pp
    • Han, E.H., Karypis, G., Kumar, V.: Text categorization using weight-adjusted nearest-neighbor classification. In: Conference on Knowledge Discovery and Data Mining, Hong Kong. China, pp. 53-65 (2001)
    • (2001) Conference on Knowledge Discovery and Data Mining , pp. 53-65
    • Han, E.H.1    Karypis, G.2    Kumar, V.3
  • 13
    • 1942420345 scopus 로고    scopus 로고
    • Learning metrics via discriminant kernels and multidimensional scaling: Toward expected Euclidean representation
    • Zhang, Z.: Learning metrics via discriminant kernels and multidimensional scaling: toward expected Euclidean representation. In: Proc. of ICML. pp. 872-879 (2003)
    • (2003) Proc. of ICML , pp. 872-879
    • Zhang, Z.1
  • 16
    • 33745786102 scopus 로고    scopus 로고
    • Using Weighted Nearest Neighbor to Benefit from Unlabeled Data
    • Ng, W.-K, Kitsuregawa, M, Li, J, Chang, K, eds, PAKDD 2006, Springer, Heidelberg
    • Driessens, K., Reutemann, P., Pfahringer, B., Leschi, C.: Using Weighted Nearest Neighbor to Benefit from Unlabeled Data. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 60-69. Springer, Heidelberg (2006)
    • (2006) LNCS (LNAI , vol.3918 , pp. 60-69
    • Driessens, K.1    Reutemann, P.2    Pfahringer, B.3    Leschi, C.4
  • 17
    • 33748127060 scopus 로고    scopus 로고
    • Case-based reasoning and neural network based expert system for personalization
    • Im, K.H., Park. S.C.: Case-based reasoning and neural network based expert system for personalization. Expert Systems with Applications 32, 77-85 (2007)
    • (2007) Expert Systems with Applications , vol.32 , pp. 77-85
    • Im, K.H.1    Park, S.C.2
  • 18
    • 34548861468 scopus 로고    scopus 로고
    • Feature-weighted k-Nearest Neighbor Classifier
    • Vivencio. D.P., et al.: Feature-weighted k-Nearest Neighbor Classifier. In: Proc. of FOCI, pp. 481-486 (2007)
    • (2007) Proc. of FOCI , pp. 481-486
    • Vivencio, D.P.1
  • 19
    • 52649085294 scopus 로고    scopus 로고
    • Novel Decision Tree Induction Algorithm Based on Receiver Operating Characteristics to Classify Gene Expression Data
    • Hossain, M.M., Hassan, M.R., Bailey, J.: ROC-tree: A Novel Decision Tree Induction Algorithm Based on Receiver Operating Characteristics to Classify Gene Expression Data. In: Proc. of 8th SIAM Int'l Conf. on Data Mining (SDM 2008). pp. 455-465 (2008)
    • (2008) Proc. of 8th SIAM Int'l Conf. on Data Mining (SDM , pp. 455-465
    • Hossain, M.M.1    Hassan, M.R.2    Bailey, J.3    ROC-tree, A.4
  • 20
    • 1942514832 scopus 로고    scopus 로고
    • Learning decision trees using the area under the ROC curve
    • Ferri, C., Flach. P., Hernandez-Orallo, J.: Learning decision trees using the area under the ROC curve. In: Proc. of ICML, pp. 139-146 (2002)
    • (2002) Proc. of ICML , pp. 139-146
    • Ferri, C.1    Flach, P.2    Hernandez-Orallo, J.3
  • 21
    • 12244287909 scopus 로고    scopus 로고
    • A Rank Sum Test Method for Informative Gene Discovery
    • Deng, L., Pei, J., Ma, J., Lee, D.L.: A Rank Sum Test Method for Informative Gene Discovery. In: Proc. of KDD, pp. 410-419 (2004)
    • (2004) Proc. of KDD , pp. 410-419
    • Deng, L.1    Pei, J.2    Ma, J.3    Lee, D.L.4
  • 22
    • 56049084710 scopus 로고    scopus 로고
    • Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)
    • Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)
  • 23
    • 0345438685 scopus 로고    scopus 로고
    • ROC Graphs: Notes and Practical Considerations for Researchers
    • Technical Report MS 1143, HP Laboratories
    • Fawcett, T.: ROC Graphs: Notes and Practical Considerations for Researchers. Technical Report MS 1143, HP Laboratories (2004)
    • (2004)
    • Fawcett, T.1
  • 25
    • 33748466311 scopus 로고    scopus 로고
    • Selecting features in microarray classification using ROC curves
    • Mamitsuka, H.: Selecting features in microarray classification using ROC curves. Pattern Recognition 39(12), 2393-2404 (2006)
    • (2006) Pattern Recognition , vol.39 , Issue.12 , pp. 2393-2404
    • Mamitsuka, H.1
  • 26
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • van't Veer, L.J., et al.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415. 530-535 (2002)
    • (2002) Nature , vol.415 , pp. 530-535
    • van't Veer, L.J.1
  • 28
    • 0035931947 scopus 로고    scopus 로고
    • Gene-expression profiles in hereditary breast cancer
    • Hedenfalk, I., et al.: Gene-expression profiles in hereditary breast cancer. The New England Journal of Medicine 344(8). 539-548 (2001)
    • (2001) The New England Journal of Medicine , vol.344 , Issue.8 , pp. 539-548
    • Hedenfalk, I.1
  • 29
    • 0036735386 scopus 로고    scopus 로고
    • Translation of Microarray Data into Clinically Relevant Cancer Diagnostic Tests Using Gene Expression Ratios in Lung Cancer And Mesothelioma
    • Gordon, G.J., et al.: Translation of Microarray Data into Clinically Relevant Cancer Diagnostic Tests Using Gene Expression Ratios in Lung Cancer And Mesothelioma. Cancer Research 62, 4963-4967 (2002)
    • (2002) Cancer Research , vol.62 , pp. 4963-4967
    • Gordon, G.J.1
  • 30
    • 56049089893 scopus 로고    scopus 로고
    • The Division of Thoracic Surgery
    • The Division of Thoracic Surgery (2002), http://www.chestsurg.org/ publications/2002-microarray.aspx
    • (2002)
  • 31
    • 56049112397 scopus 로고    scopus 로고
    • Broad Institute Cancer Program
    • Broad Institute Cancer Program (2002), http://www.broad.mit.edu/cgi-bin/ cancer/publications/pub_paper.cgi?mode=view&paper_id=75
    • (2002)
  • 32
    • 19044391072 scopus 로고    scopus 로고
    • Gene Expression Correlates of Clinical Prostate Cancer Behavior
    • Singh, D., et al.: Gene Expression Correlates of Clinical Prostate Cancer Behavior. Cancer Cell 1, 203-209 (2002)
    • (2002) Cancer Cell , vol.1 , pp. 203-209
    • Singh, D.1
  • 33
    • 56049095540 scopus 로고    scopus 로고
    • Broad Institute Cancer Program
    • Broad Institute Cancer Program (1999), http://www.broad.mit.edu/cgi-bin/ cancer/publications/pub_paper.cgi?mode=view&paper_id=43
    • (1999)
  • 34
    • 0033569406 scopus 로고    scopus 로고
    • Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring
    • Golub. T.R., et al.: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286, 531-537 (1999)
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 35
    • 56049091539 scopus 로고    scopus 로고
    • UCI Repository of machine learning databases
    • Newman, D., et al.: UCI Repository of machine learning databases. Online Repository (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html
    • (1998) Online Repository
    • Newman, D.1
  • 36
    • 56049097706 scopus 로고    scopus 로고
    • Methods for Data Mining
    • Data Mining on Multimedia Data, Springer, Heidelberg
    • Perner, P.: Methods for Data Mining. In: Data Mining on Multimedia Data. LNCS, vol. 2558, pp. 23-89. Springer, Heidelberg (2002)
    • (2002) LNCS , vol.2558 , pp. 23-89
    • Perner, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.