메뉴 건너뛰기




Volumn 31, Issue 10, 2010, Pages 1956-1968

A self-adaptive genetic algorithm-artificial neural network algorithm with leave-one-out cross validation for descriptor selection in QSAR study

Author keywords

Artificial neural network; Genetic algorithms; Leave multiple out; Leave one out; Multiple linear regression; Quantitative structure activity relationship; Y randomization

Indexed keywords

ARTIFICIAL NEURAL NETWORK; ARTIFICIAL NEURAL NETWORK ALGORITHM; ARTIFICIAL NEURAL NETWORKS; BIOLOGICAL ACTIVITIES; CROSS VALIDATION; CROSS-VALIDATION TECHNIQUE; DESCRIPTORS; LEAVE-ONE-OUT; MULTIPLE LINEAR REGRESSIONS; OVERFITTING; PREDICTIVE POWER; QSAR MODEL; QSAR STUDIES; QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP; QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS; ROOT MEAN SQUARE DEVIATIONS; SELF ADAPTIVE GENETIC ALGORITHM; SELF-ADAPTIVE; STEPWISE MULTIPLE LINEAR REGRESSION; TRAINING ALGORITHMS;

EID: 77953405089     PISSN: 01928651     EISSN: 1096987X     Source Type: Journal    
DOI: 10.1002/jcc.21471     Document Type: Article
Times cited : (35)

References (53)
  • 53
    • 0000295654 scopus 로고
    • van de Waterbeemd, H., Ed.; VCH: Weinheim
    • Wold, S.; Erikson, L. In Chemometric Methods in Molecular Design; van de Waterbeemd, H., Ed.; VCH: Weinheim, 1995; pp 309-318.
    • (1995) , pp. 309-318
    • Wold, S.1    Erikson, L.2    Design, I.C.M.I.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.