메뉴 건너뛰기




Volumn 21, Issue 6, 2010, Pages 938-947

Convergence and objective functions of some fault/noise-injection-based online learning algorithms for RBF networks

Author keywords

Convergence; Fault tolerance; Gladyshev theorem; Objective functions; RBF Networks

Indexed keywords

ALMOST SURE; FAULT-TOLERANT; GLADYSHEV THEOREM; INPUT NOISE; MEAN SQUARE; OBJECTIVE FUNCTIONS; ON-LINE ALGORITHMS; ONLINE LEARNING ALGORITHMS; RBF NETWORK; REGULARIZER; TRAINING ERRORS; WEIGHT DECAY;

EID: 77953119547     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2010.2046179     Document Type: Article
Times cited : (56)

References (49)
  • 1
    • 2342565172 scopus 로고    scopus 로고
    • The effects of adding noise during backpropagation training on a generalization performance
    • Apr.
    • G. An, "The effects of adding noise during backpropagation training on a generalization performance," Neural Comput., vol.8, no.3, pp. 643-674, Apr. 1996.
    • (1996) Neural Comput , vol.8 , Issue.3 , pp. 643-674
    • An, G.1
  • 3
    • 0034058275 scopus 로고    scopus 로고
    • Improving the tolerance of multilayer perceptrons by minimizing the statistical sensitivity to weight deviations
    • Jan.
    • J. L. Bernier, J. Ortega, I. Rojas, and A. Prieto, "Improving the tolerance of multilayer perceptrons by minimizing the statistical sensitivity to weight deviations," Neurocomputing, vol.31, pp. 87-103, Jan. 2000.
    • (2000) Neurocomputing , vol.31 , pp. 87-103
    • Bernier, J.L.1    Ortega, J.2    Rojas, I.3    Prieto, A.4
  • 4
    • 0034293872 scopus 로고    scopus 로고
    • Obtaining fault tolerant multilayer perceptrons using an explicit regularization
    • Oct.
    • J. L. Bernier, J. Ortega, I. Rojas, E. Ros, and A. Prieto, "Obtaining fault tolerant multilayer perceptrons using an explicit regularization," Neural Process. Lett., vol.12, no.2, pp. 107-113, Oct. 2000.
    • (2000) Neural Process. Lett. , vol.12 , Issue.2 , pp. 107-113
    • Bernier, J.L.1    Ortega, J.2    Rojas, I.3    Ros, E.4    Prieto, A.5
  • 5
    • 0039178084 scopus 로고    scopus 로고
    • A quantitative study of fault tolerance, noise immunity, and generalization ability of MLPs
    • Dec.
    • J. L. Bernier, J. Ortega, E. Ros, I. Rojas, and A. Prieto, "A quantitative study of fault tolerance, noise immunity, and generalization ability of MLPs," Neural Comput., vol.12, no.12, pp. 2941-2964, Dec. 2000.
    • (2000) Neural Comput , vol.12 , Issue.12 , pp. 2941-2964
    • Bernier, J.L.1    Ortega, J.2    Ros, E.3    Rojas, I.4    Prieto, A.5
  • 6
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • Jan.
    • C. M. Bishop, "Training with noise is equivalent to Tikhonov regularization," Neural Comput., vol.7, no.1, pp. 108-116, Jan. 1995.
    • (1995) Neural Comput , vol.7 , Issue.1 , pp. 108-116
    • Bishop, C.M.1
  • 7
    • 33750590619 scopus 로고
    • Fault tolerant multi-layer perceptron networks
    • Ph.D. dissertation, Univ. York, York, U.K. Jul.
    • G. Bolt, "Fault tolerant multi-layer perceptron networks," Ph.D. dissertation, Dept. Comput. Sci., Univ. York, York, U.K., Jul. 1992.
    • (1992) Dept. Comput. Sci.
    • Bolt, G.1
  • 8
    • 33847215211 scopus 로고
    • Stochastic gradient learning in neural networks
    • Nov. [Online]. Available:
    • L. Bottou, "Stochastic gradient learning in neural networks," in Proc. Neuro-Nîmes, Nimes, France, Nov. 1991, pp. 687-706 [Online]. Available: http://leon.bottou.org/papers/bottou-91c
    • (1991) Proc. Neuro-Nîmes, Nimes, France , pp. 687-706
    • Bottou, L.1
  • 9
    • 0013309537 scopus 로고    scopus 로고
    • Online algorithms and stochastic approximations
    • D. Saad, Ed. Cambridge, U.K.: Cambridge Univ. Press, [Online].Available
    • L. Bottou, "Online algorithms and stochastic approximations," in Online Learning and Neural Networks, D. Saad, Ed. Cambridge, U.K.: Cambridge Univ. Press, 1998, pp. 9-24 [Online].Available: http://leon. bottou.org/papers/bottou-98x
    • (1998) Online Learning and Neural Networks , pp. 9-24
    • Bottou, L.1
  • 10
    • 0032980090 scopus 로고    scopus 로고
    • A novel learning algorithm which improves the partial fault tolerance of multilayer neural networks
    • Jan.
    • S. Cavalieri and O. Mirabella, "A novel learning algorithm which improves the partial fault tolerance of multilayer neural networks," Neural Netw., vol.12, no.1, pp. 91-106, Jan. 1999.
    • (1999) Neural Netw , vol.12 , Issue.1 , pp. 91-106
    • Cavalieri, S.1    Mirabella, O.2
  • 11
    • 0141461599 scopus 로고    scopus 로고
    • Fault tolerance of feedforward artificial neural networks-A framework of study
    • Portland, OR, Jun.
    • P. Chandra and Y. Singh, "Fault tolerance of feedforward artificial neural networks-A framework of study," in Proc. Int. Joint Conf. Neural Netw., Portland, OR, Jun. 2003, vol.1, pp. 489-494.
    • (2003) Proc. Int. Joint Conf. Neural Netw. , vol.1 , pp. 489-494
    • Chandra, P.1    Singh, Y.2
  • 12
    • 0028750847 scopus 로고
    • Modifying training algorithms for improved fault tolerance
    • Orlando, FL,Jun.
    • C. T. Chiu, K. Mehrotra, C. K. Mohan, and S. Ranka, "Modifying training algorithms for improved fault tolerance," in Proc. Int. Conf. Neural Netw., Orlando, FL, Jun. 1994, vol.4, pp. 333-338.
    • (1994) Proc. Int. Conf. Neural Netw. , vol.4 , pp. 333-338
    • Chiu, C.T.1    Mehrotra, K.2    Mohan, C.K.3    Ranka, S.4
  • 13
    • 0032163167 scopus 로고    scopus 로고
    • Synthesis of fault-tolerant feedforward neural networks using minimax optimization
    • Sep.
    • D. Deodhare, M. Vidyasagar, and S. Sathiya Keerthi, "Synthesis of fault-tolerant feedforward neural networks using minimax optimization," IEEE Trans. Neural Netw., vol.9, no.5, pp. 891-900, Sep. 1998.
    • (1998) IEEE Trans. Neural Netw. , vol.9 , Issue.5 , pp. 891-900
    • Deodhare, D.1    Vidyasagar, M.2    Sathiya Keerthi, S.3
  • 14
    • 0032165494 scopus 로고    scopus 로고
    • Fault tolerant via weight noise in analog VLSI implementations of MLP's-A case study with EPSILON
    • Sep.
    • P. Edwards and A. Murray, "Fault tolerant via weight noise in analog VLSI implementations of MLP's-A case study with EPSILON," IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol.45, no.9, pp. 1255-1262, Sep. 1998.
    • (1998) IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. , vol.45 , Issue.9 , pp. 1255-1262
    • Edwards, P.1    Murray, A.2
  • 15
    • 0007298844 scopus 로고
    • On stochastic approximation
    • Jan.
    • E. Gladyshev, "On stochastic approximation," Theory Probab. Appl., vol.10, no.2, pp. 275-278, Jan. 1965.
    • (1965) Theory Probab. Appl. , vol.10 , Issue.2 , pp. 275-278
    • Gladyshev, E.1
  • 16
    • 0013230715 scopus 로고    scopus 로고
    • Noise injection: Theoretical prospects
    • July
    • Y. Grandvalet, S. Canu, and S. Boucheron, "Noise injection: Theoretical prospects," Neural Comput., vol.9, no.5, pp. 1093-1108, July 1997.
    • (1997) Neural Comput , vol.9 , Issue.5 , pp. 1093-1108
    • Grandvalet, Y.1    Canu, S.2    Boucheron, S.3
  • 17
    • 0030649974 scopus 로고    scopus 로고
    • A learning algorithm for fault tolerant feedforward neural networks
    • Jan.
    • N. Hammadi and H. Ito, "A learning algorithm for fault tolerant feedforward neural networks," IEICE Trans. Inf. Syst., vol.80, no.1, pp. 21-27, Jan. 1996.
    • (1996) IEICE Trans. Inf. Syst. , vol.80 , Issue.1 , pp. 21-27
    • Hammadi, N.1    Ito, H.2
  • 18
    • 0001234705 scopus 로고
    • Second order derivatives for network pruning: Optimal brain surgeon
    • San Francisco, CA: Morgan Kaufmann
    • B. Hassibi and D. G. Stork, "Second order derivatives for network pruning: Optimal brain surgeon," in Advances in Neural Information Processing Systems 5. San Francisco, CA: Morgan Kaufmann, 1993, pp. 164-171.
    • (1993) Advances in Neural Information Processing Systems 5 , pp. 164-171
    • Hassibi, B.1    Stork, D.G.2
  • 19
    • 34248645728 scopus 로고    scopus 로고
    • Feedforward neural network implementation in FPGA using layer multiplexing for effective resource utilization
    • May.
    • S. Himavathi, D. Anitha, and A. Muthuramalingam, "Feedforward neural network implementation in FPGA using layer multiplexing for effective resource utilization," IEEE Trans. Neural Netw., vol.18, no.3, pp. 880-888, May 2007.
    • (2007) IEEE Trans. Neural Netw. , vol.18 , Issue.3 , pp. 880-888
    • Himavathi, S.1    Anitha, D.2    Muthuramalingam, A.3
  • 20
    • 70449408530 scopus 로고    scopus 로고
    • A study of the effect of noise injection on the training of artificial neural networks
    • Jun.
    • Y. Jiang, R. Zur, L. Pesce, and K. Drukker, "A study of the effect of noise injection on the training of artificial neural networks," in Proc. Int. Joint Conf. Neural Netw., Jun. 2009, pp. 2784-2788.
    • (2009) Proc. Int. Joint Conf. Neural Netw. , pp. 2784-2788
    • Jiang, Y.1    Zur, R.2    Pesce, L.3    Drukker, K.4
  • 21
    • 0342990011 scopus 로고    scopus 로고
    • An analysis of noise in recurrent neural networks: Convergence and generalization
    • Nov.
    • K. Jim, C. Lee Giles, and B. Horne, "An analysis of noise in recurrent neural networks: Convergence and generalization," IEEE Trans. Neural Netw., vol.7, no.6, pp. 1424-1439, Nov. 1996.
    • (1996) IEEE Trans. Neural Netw. , vol.7 , Issue.6 , pp. 1424-1439
    • Jim, K.1    Lee Giles, C.2    Horne, B.3
  • 22
    • 0034316622 scopus 로고    scopus 로고
    • On a weight limit approach for enhancing fault tolerance of feedforward neural networks
    • Nov.
    • N. Kamiura, T. Isokawa, Y. Hara, N. Matsui, and K. Yamato, "On a weight limit approach for enhancing fault tolerance of feedforward neural networks," IEICE Trans. Inf. Syst., vol.83, no.11, pp. 1931-1939, Nov. 2000.
    • (2000) IEICE Trans. Inf. Syst. , vol.83 , Issue.11 , pp. 1931-1939
    • Kamiura, N.1    Isokawa, T.2    Hara, Y.3    Matsui, N.4    Yamato, K.5
  • 23
    • 0038026196 scopus 로고    scopus 로고
    • Stochastic approximation
    • Apr.
    • T. Lai, "Stochastic approximation," Ann. Stat., vol.31, no.2, pp. 391-406, Apr. 2003.
    • (2003) Ann. Stat. , vol.31 , Issue.2 , pp. 391-406
    • Lai, T.1
  • 25
    • 40949101789 scopus 로고    scopus 로고
    • A fault-tolerant regularizer for RBF networks
    • May.
    • C. S. Leung and J. Sum, "A fault-tolerant regularizer for RBF networks," IEEE Trans. Neural Netw., vol.19, no.3, pp. 493-507, May 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.3 , pp. 493-507
    • Leung, C.S.1    Sum, J.2
  • 26
    • 0030574155 scopus 로고    scopus 로고
    • On-line training and pruning for RLS algorithms
    • Nov.
    • C. S. Leung, K. W.Wong, P. F. Sum, and L. W. Chan, "On-line training and pruning for RLS algorithms," Electron. Lett., vol.32, no.23, pp. 2152-2153, Nov. 1996.
    • (1996) Electron. Lett. , vol.32 , Issue.23 , pp. 2152-2153
    • Leung, C.S.1    Wong, K.W.2    Sum, P.F.3    Chan, L.W.4
  • 27
    • 0035131889 scopus 로고    scopus 로고
    • A pruning method for the recursive least squared algorithm
    • Mar.
    • C. S. Leung, K. W. Wong, P. F. Sum, and L. W. Chan, "A pruning method for the recursive least squared algorithm," Neural Netw., vol.14, no.2, pp. 147-174, Mar. 2001.
    • (2001) Neural Netw , vol.14 , Issue.2 , pp. 147-174
    • Leung, C.S.1    Wong, K.W.2    Sum, P.F.3    Chan, L.W.4
  • 28
    • 0033347007 scopus 로고    scopus 로고
    • On the regularization of forgetting recursive least square
    • Nov.
    • C. S. Leung, G. H. Young, J. Sum, and W. K. Kan, "On the regularization of forgetting recursive least square," IEEE Trans. Neural Netw., vol.10, no.6, pp. 1482-1486, Nov. 1999.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.6 , pp. 1482-1486
    • Leung, C.S.1    Young, G.H.2    Sum, J.3    Kan, W.K.4
  • 29
    • 0029748007 scopus 로고    scopus 로고
    • Fault tolerance parameter model of radial basis function networks
    • Jun.
    • A. C. Mallofre and X. P. Llanas, "Fault tolerance parameter model of radial basis function networks," in Proc. Int. Joint Conf. Neural Netw., Jun. 1996, vol.2, pp. 1384-1389.
    • (1996) Proc. Int. Joint Conf. Neural Netw. , vol.2 , pp. 1384-1389
    • Mallofre, A.C.1    Llanas, X.P.2
  • 30
    • 0026858102 scopus 로고
    • Noise injection into inputs in back-propagation learning
    • May.
    • K. Matsuoka, "Noise injection into inputs in back-propagation learning," IEEE Trans. Syst. Man Cybern., vol.22, no.3, pp. 436-440, May 1992.
    • (1992) IEEE Trans. Syst. Man Cybern. , vol.22 , Issue.3 , pp. 436-440
    • Matsuoka, K.1
  • 31
    • 0026289079 scopus 로고
    • Note on generalization, regularization, and architecture selection in nonlinear learning systems
    • Sep. DOI: 10.1109/NNSP. 1991.239541
    • J. E. Moody, "Note on generalization, regularization, and architecture selection in nonlinear learning systems," in Proc. 1st IEEE-SP Workshop Neural Netw. Signal Process., Sep. 1991, DOI: 10.1109/NNSP. 1991.239541 .
    • (1991) Proc. 1st IEEE-SP Workshop Neural Netw. Signal Process.
    • Moody, J.E.1
  • 32
    • 0028544395 scopus 로고
    • Network information criterion-determining the number of hidden units for an artificial neural network model
    • Nov.
    • N. Murata, S. Yoshizawa, and S. Amari, "Network information criterion-determining the number of hidden units for an artificial neural network model," IEEE Trans. Neural Netw., vol.5, no.6, pp. 865-872, Nov. 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.6 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 33
    • 0027629615 scopus 로고
    • Synaptic weight noise during multilayer perceptron training: Fault tolerance and training improvements
    • Jul.
    • A. F. Murray and P. J. Edwards, "Synaptic weight noise during multilayer perceptron training: Fault tolerance and training improvements," IEEE Trans. Neural Netw., vol.4, no.4, pp. 722-725, Jul. 1993.
    • (1993) IEEE Trans. Neural Netw. , vol.4 , Issue.4 , pp. 722-725
    • Murray, A.F.1    Edwards, P.J.2
  • 34
    • 0028494739 scopus 로고
    • Enhanced MLP performance and fault tolerance from synaptic weight noise during training
    • Sep.
    • A. F. Murray and P. J. Edwards, "Enhanced MLP performance and fault tolerance from synaptic weight noise during training," IEEE Trans. Neural Netw., vol.5, no.5, pp. 792-802, Sep. 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.5 , pp. 792-802
    • Murray, A.F.1    Edwards, P.J.2
  • 35
    • 0026679384 scopus 로고
    • Maximally fault tolerance neural networks
    • Jan.
    • C. Neti, M. H. Schneider, and E. D. Young, "Maximally fault tolerance neural networks," IEEE Trans. Neural Netw., vol.3, no.1, pp. 14-23, Jan. 1992.
    • (1992) IEEE Trans. Neural Netw. , vol.3 , Issue.1 , pp. 14-23
    • Neti, C.1    Schneider, M.H.2    Young, E.D.3
  • 36
    • 85156214178 scopus 로고
    • Pruning with generalization based weight saliencies: γ-OBD, γ-OBS
    • Cambridge, MA: MIT Press
    • M. W. Pedersen, L. Hansen, and J. Larsen, "Pruning with generalization based weight saliencies: γ-OBD, γ-OBS," in Advances in Neural Information Processing Systems 8. Cambridge, MA: MIT Press, 1995, pp. 521-527.
    • (1995) Advances in Neural Information Processing Systems , vol.8 , pp. 521-527
    • Pedersen, M.W.1    Hansen, L.2    Larsen, J.3
  • 37
    • 0033346092 scopus 로고    scopus 로고
    • Relationship between fault tolerance, generalization and the Vapnik-Cervonenkis (vc) dimension of feedforward ANNs
    • Jul.
    • D. S. Phatak, "Relationship between fault tolerance, generalization and the Vapnik-Cervonenkis (vc) dimension of feedforward ANNs," in Proc. Int. Joint Conf. Neural Netw., Jul. 1999, vol.1, pp. 705-709.
    • (1999) Proc. Int. Joint Conf. Neural Netw. , vol.1 , pp. 705-709
    • Phatak, D.S.1
  • 38
    • 0029269583 scopus 로고
    • Complete and partial fault tolerance of feedforward neural nets
    • Mar.
    • D. S. Phatak and I. Koren, "Complete and partial fault tolerance of feedforward neural nets," IEEE Trans. Neural Netw., vol.6, no.2, pp. 446-456, Mar. 1995.
    • (1995) IEEE Trans. Neural Netw. , vol.6 , Issue.2 , pp. 446-456
    • Phatak, D.S.1    Koren, I.2
  • 39
    • 0027662338 scopus 로고
    • Pruning algorithms a survey
    • Sep.
    • R. Reed, "Pruning algorithms a survey," IEEE Trans. Neural Netw., vol.4, no.5, pp. 740-747, Sep. 1993.
    • (1993) IEEE Trans. Neural Netw. , vol.4 , Issue.5 , pp. 740-747
    • Reed, R.1
  • 40
    • 0029306953 scopus 로고
    • Similarities of error regularization, sigmoid gain scaling, target smoothing, and training with jitter
    • May.
    • R. Reed, R. J. Marks II, and S. Oh, "Similarities of error regularization, sigmoid gain scaling, target smoothing, and training with jitter," IEEE Trans. Neural Netw., vol.10, no.3, pp. 529-538, May 1995.
    • (1995) IEEE Trans. Neural Netw. , vol.10 , Issue.3 , pp. 529-538
    • Reed, R.1    Marks, I.I.R.J.2    Oh, S.3
  • 41
    • 33846101011 scopus 로고    scopus 로고
    • The impact of arithmetic representation on implementing MLP-BP on FPGAs: A study
    • Jan.
    • A. Savich, M. Moussa, and S. Areibi, "The impact of arithmetic representation on implementing MLP-BP on FPGAs: A study," IEEE Trans. Neural Netw., vol.18, no.1, pp. 240-252, Jan. 2007.
    • (2007) IEEE Trans. Neural Netw. , vol.18 , Issue.1 , pp. 240-252
    • Savich, A.1    Moussa, M.2    Areibi, S.3
  • 42
    • 0025563947 scopus 로고
    • Fault tolerance in artificial neural networks
    • Jan.
    • C. Sequin and R. Clay, "Fault tolerance in artificial neural networks," in Proc. Int. Joint Conf. Neural Netw., Jan. 1990, pp. 703-708.
    • (1990) Proc. Int. Joint Conf. Neural Netw. , pp. 703-708
    • Sequin, C.1    Clay, R.2
  • 43
    • 0035989166 scopus 로고    scopus 로고
    • Optimal design of regularization term and regularization parameter by subspace information criterion
    • Apr.
    • M. Sugiyama and H. Ogawa, "Optimal design of regularization term and regularization parameter by subspace information criterion," Neural Netw., vol.15, no.3, pp. 349-361, Apr. 2002.
    • (2002) Neural Netw , vol.15 , Issue.3 , pp. 349-361
    • Sugiyama, M.1    Ogawa, H.2
  • 44
    • 76649140841 scopus 로고    scopus 로고
    • SNIWD: Simultaneous weight noise injection with weight decay for MLP training
    • Berlin, Germany: Springer-Verlag, Dec.
    • J. Sum and K. Ho, "SNIWD: Simultaneous weight noise injection with weight decay for MLP training," in Lecture Notes in Computer Science. Berlin, Germany: Springer-Verlag, Dec. 2009, vol.5863, pp. 494-501.
    • (2009) Lecture Notes in Computer Science , vol.5863 , pp. 494-501
    • Sum, J.1    Ho, K.2
  • 45
    • 58649112157 scopus 로고    scopus 로고
    • On objective function, regularizer, and prediction error of a learning algorithm for dealing with multiplicative weight noise
    • Jan.
    • J. Sum, C. S. Leung, and K. I.-J. Ho, "On objective function, regularizer, and prediction error of a learning algorithm for dealing with multiplicative weight noise," IEEE Trans. Neural Netw., vol.20, no.1, pp. 124-138, Jan. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.1 , pp. 124-138
    • Sum, J.1    Leung, C.S.2    Ho, K.I.-J.3
  • 46
    • 0033717760 scopus 로고    scopus 로고
    • A fault-value injection approach for multiple-weightfault tolerance of MNNs
    • Washington, DC, Jul.
    • I. Takanami, "A fault-value injection approach for multiple-weightfault tolerance of MNNs," in Proc. IEEE-INNS-ENNS Int. Joint Conf. Neural Netw., Washington, DC, Jul. 2000, vol.3, p. 3515.
    • (2000) Proc. IEEE-INNS-ENNS Int. Joint Conf. Neural Netw. , vol.3 , pp. 3515
    • Takanami, I.1
  • 47
    • 18744369958 scopus 로고    scopus 로고
    • Investigating the fault tolerance of neural networks
    • Jul.
    • E. Tchernev, R. Mulvaney, and D. Phatak, "Investigating the fault tolerance of neural networks," Neural Comput., vol.17, no.7, pp. 1646-1664, Jul. 2005.
    • (2005) Neural Comput , vol.17 , Issue.7 , pp. 1646-1664
    • Tchernev, E.1    Mulvaney, R.2    Phatak, D.3
  • 48
    • 0029493358 scopus 로고
    • SEU fault tolerance in artificial neural networks
    • Dec.
    • R. Velazco, A. Assoum, N. Radi, R. Ecoffet, and X. Botey, "SEU fault tolerance in artificial neural networks," IEEE Trans. Nuclear Sci., vol.42, no.6, pt. 1, pp. 1856-1862, Dec. 1995.
    • (1995) IEEE Trans. Nuclear Sci. , vol.42 , Issue.6 PART. 1 , pp. 1856-1862
    • Velazco, R.1    Assoum, A.2    Radi, N.3    Ecoffet, R.4    Botey, X.5
  • 49
    • 33746892995 scopus 로고    scopus 로고
    • FPGA implementation of neural networks-A survey of a decade of progress
    • Sep.
    • J. Zhu and P. Sutton, "FPGA implementation of neural networks-A survey of a decade of progress," in Proc. 13th Int. Conf. Field Programmable Logic Appl., Sep. 2003, pp. 1062-1066.
    • (2003) Proc. 13th Int. Conf. Field Programmable Logic Appl. , pp. 1062-1066
    • Zhu, J.1    Sutton, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.