-
1
-
-
0001740650
-
Training with noise is equivalent to Tikhonov regularization
-
Bishop, C. M. (1995). Training with noise is equivalent to Tikhonov regularization. Neural Computation, 7, 108-116.
-
(1995)
Neural Computation
, vol.7
, pp. 108-116
-
-
Bishop, C.M.1
-
4
-
-
0028494739
-
Enhanced MLP performance and fault tolerance resulting from synaptic weight noise during training
-
Murray, A. F., & Edwards, P. J. (1994). Enhanced MLP performance and fault tolerance resulting from synaptic weight noise during training. IEEE Transactions on Neural Networks, 5, 792-802.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, pp. 792-802
-
-
Murray, A.F.1
Edwards, P.J.2
-
5
-
-
0026679384
-
Maximally fault tolerant neural networks
-
Neti, C., Schneider, M. H., & Young, E. D. (1992). Maximally fault tolerant neural networks. IEEE Transactions on Neural Networks, 3, 14-23.
-
(1992)
IEEE Transactions on Neural Networks
, vol.3
, pp. 14-23
-
-
Neti, C.1
Schneider, M.H.2
Young, E.D.3
-
6
-
-
0025448084
-
Trellis codes, receptive fields, and fault tolerant, self-repairing neural networks
-
Petsche, T., & Dickinson, B. W. (1990). Trellis codes, receptive fields, and fault tolerant, self-repairing neural networks. IEEE Transactions on Neural Networks, 1, 154-166.
-
(1990)
IEEE Transactions on Neural Networks
, vol.1
, pp. 154-166
-
-
Petsche, T.1
Dickinson, B.W.2
-
8
-
-
0033346092
-
Relationship between fault tolerance, generalization and the Vapnik-Chervonenkis (VC) dimension of feedforward ANNs
-
Washington, DC
-
Phatak, D. S. (1999). Relationship between fault tolerance, generalization and the Vapnik-Chervonenkis (VC) dimension of feedforward ANNs. In Proceedings of the International Joint Conference on Neural Networks (pp. 705-709). Washington, DC.
-
(1999)
Proceedings of the International Joint Conference on Neural Networks
, pp. 705-709
-
-
Phatak, D.S.1
-
9
-
-
0006224582
-
Fault tolerance of feedforward neural nets for classification tasks
-
Baltimore, MD
-
Phatak, D. S., & Koren, I. (1992). Fault tolerance of feedforward neural nets for classification tasks. In Proceedings of the International Joint Conference on Neural Networks (Vol. 2, pp. 386-391). Baltimore, MD.
-
(1992)
Proceedings of the International Joint Conference on Neural Networks
, vol.2
, pp. 386-391
-
-
Phatak, D.S.1
Koren, I.2
-
10
-
-
0029269583
-
Complete and partial fault tolerance of feedforward neural nets
-
Phatak, D. S., & Koren, I. (1995). Complete and partial fault tolerance of feedforward neural nets. IEEE Transactions on Neural Networks, 6, 446-456.
-
(1995)
IEEE Transactions on Neural Networks
, vol.6
, pp. 446-456
-
-
Phatak, D.S.1
Koren, I.2
-
12
-
-
0027634779
-
Performance and fault-tolerance of neural networks for optimization
-
Protzel, P. W., Palumbo, D. L., & Arras, M. K. (1993). Performance and fault-tolerance of neural networks for optimization. IEEE Transactions on Neural Networks, 4, 600-614.
-
(1993)
IEEE Transactions on Neural Networks
, vol.4
, pp. 600-614
-
-
Protzel, P.W.1
Palumbo, D.L.2
Arras, M.K.3
-
14
-
-
0028532748
-
Comparative fault tolerance of parallel distributed processing networks
-
Segee, B. E., & Carter, M. J. (1994). Comparative fault tolerance of parallel distributed processing networks. IEEE Transactions on Computers, 43, 1323-1329.
-
(1994)
IEEE Transactions on Computers
, vol.43
, pp. 1323-1329
-
-
Segee, B.E.1
Carter, M.J.2
-
16
-
-
18744385478
-
-
(Tech. Rep. No. TR-CS-04-14). Baltimore, MD: University of Maryland Baltimore County
-
Tchernev, E., Mulvaney, R., & Phatak, D. S. (2004). Perfect fault tolerance of the n-k-n network (Tech. Rep. No. TR-CS-04-14). Baltimore, MD: University of Maryland Baltimore County.
-
(2004)
Perfect Fault Tolerance of the N-k-n Network
-
-
Tchernev, E.1
Mulvaney, R.2
Phatak, D.S.3
|