메뉴 건너뛰기




Volumn 19, Issue 3, 2008, Pages 493-507

A fault-tolerant regularizer for RBF networks

Author keywords

Kullback Leibler divergence; Node open fault; Regularization

Indexed keywords

COMPUTATIONAL COMPLEXITY; FAULT TOLERANT COMPUTER SYSTEMS; GAUSSIAN DISTRIBUTION; LEARNING ALGORITHMS;

EID: 40949101789     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2007.912320     Document Type: Article
Times cited : (59)

References (37)
  • 1
    • 0026264289 scopus 로고
    • Fault models for artificial neural networks
    • Singapore
    • G. R. Bolt, "Fault models for artificial neural networks," in Proc. Int. Joint Conf. Neural Netw., Singapore, 1991, pp. 1373-1378.
    • (1991) Proc. Int. Joint Conf. Neural Netw , pp. 1373-1378
    • Bolt, G.R.1
  • 2
    • 33750590619 scopus 로고
    • Fault tolerant multi-layer perceptron networks,
    • Tech. Rep. YCS-92-180
    • G. R. Bolt, J. Austin, and G. Morgan, "Fault tolerant multi-layer perceptron networks," Tech. Rep. YCS-92-180, 1992.
    • (1992)
    • Bolt, G.R.1    Austin, J.2    Morgan, G.3
  • 3
    • 0028494739 scopus 로고
    • Enhanced MLP performance annd fault tolerance resulting from synaptic weight noise during training
    • Sep
    • A. F. Murray and P. J. Edwards, "Enhanced MLP performance annd fault tolerance resulting from synaptic weight noise during training," IEEE Trans. Neural Netw., vol. 5, no. 5, pp. 792-802, Sep. 1994.
    • (1994) IEEE Trans. Neural Netw , vol.5 , Issue.5 , pp. 792-802
    • Murray, A.F.1    Edwards, P.J.2
  • 5
    • 0029269583 scopus 로고
    • Complete and partial fault tolerance of feedforward neural nets
    • Mar
    • D. S. Phatak and I. Koren, "Complete and partial fault tolerance of feedforward neural nets," IEEE Trans. Neural Netw., vol. 6, no. 2, pp. 446-456, Mar. 1995.
    • (1995) IEEE Trans. Neural Netw , vol.6 , Issue.2 , pp. 446-456
    • Phatak, D.S.1    Koren, I.2
  • 6
    • 0034875912 scopus 로고    scopus 로고
    • Improving tolerance of neural networks against multi-node open fault
    • Z. H. Zhou, S. F. Chen, and Z. Q. Chen, "Improving tolerance of neural networks against multi-node open fault," in Proc. Int. Joint Conf. Neural Netw., 2001, vol. 3, pp. 1687-1692.
    • (2001) Proc. Int. Joint Conf. Neural Netw , vol.3 , pp. 1687-1692
    • Zhou, Z.H.1    Chen, S.F.2    Chen, Z.Q.3
  • 7
    • 0038792238 scopus 로고    scopus 로고
    • Evolving fault-tolerant neural networks
    • Z. H. Zhou and S. F. Chen, "Evolving fault-tolerant neural networks," Neural Comput. Appl., vol. 11, pp. 156-160, 2003.
    • (2003) Neural Comput. Appl , vol.11 , pp. 156-160
    • Zhou, Z.H.1    Chen, S.F.2
  • 8
    • 0027668417 scopus 로고
    • Determining and improving the fault tolerance of multilayer perceptrons in a pattern-recognition application
    • Sep
    • M. D. Emmerson and R. I. Damper, "Determining and improving the fault tolerance of multilayer perceptrons in a pattern-recognition application," IEEE Trans. Neural Netw., vol. 4, no. 5, pp. 788-793, Sep. 1993.
    • (1993) IEEE Trans. Neural Netw , vol.4 , Issue.5 , pp. 788-793
    • Emmerson, M.D.1    Damper, R.I.2
  • 9
    • 0042531397 scopus 로고
    • Fault tolerance in feedforward artificial neural networks
    • C. H. Sequin and R. D. Clay, "Fault tolerance in feedforward artificial neural networks," Neural Netw., vol. 4, pp. 111-141, 1990.
    • (1990) Neural Netw , vol.4 , pp. 111-141
    • Sequin, C.H.1    Clay, R.D.2
  • 10
    • 0032980090 scopus 로고    scopus 로고
    • A novel learning algorithm which improves the partial fault tolerance of multilayer neural networks
    • S. Cavalieri and O. Mirabella, "A novel learning algorithm which improves the partial fault tolerance of multilayer neural networks," Neural Netw., vol. 12, pp. 91-106, 1999.
    • (1999) Neural Netw , vol.12 , pp. 91-106
    • Cavalieri, S.1    Mirabella, O.2
  • 11
    • 0026679384 scopus 로고
    • Maximally fault tolerance neural networks
    • Jan
    • C. Neti, M. H. Schneider, and E. D. Young, "Maximally fault tolerance neural networks," IEEE Trans. Neural Netw., vol. 3, no. 1, pp. 14-23, Jan. 1992.
    • (1992) IEEE Trans. Neural Netw , vol.3 , Issue.1 , pp. 14-23
    • Neti, C.1    Schneider, M.H.2    Young, E.D.3
  • 12
    • 0032163167 scopus 로고    scopus 로고
    • D. Deodhare D, M. Vidyasagar, and S. S. Keerth, Sythesis of fault-tolerant feedforward neural networks using minimax optimization, IEEE Trans. Neural Netw., 9, no. 5, pp. 891-900, Sep. 1998.
    • D. Deodhare D, M. Vidyasagar, and S. S. Keerth, "Sythesis of fault-tolerant feedforward neural networks using minimax optimization," IEEE Trans. Neural Netw., vol. 9, no. 5, pp. 891-900, Sep. 1998.
  • 13
    • 0029408599 scopus 로고
    • Fault-tolerance training for optimal interpolative nets
    • Nov
    • D. Simon and H. El-Sherief, "Fault-tolerance training for optimal interpolative nets," IEEE Trans. Neural Netw., vol. 6, no. 6, pp. 1531-1535, Nov. 1995.
    • (1995) IEEE Trans. Neural Netw , vol.6 , Issue.6 , pp. 1531-1535
    • Simon, D.1    El-Sherief, H.2
  • 15
    • 33751560009 scopus 로고
    • Regularization in the selection of radial basis function centers
    • O. J. L. Mark, "Regularization in the selection of radial basis function centers," Neural Comput., vol. 7, pp. 606-623, 1995.
    • (1995) Neural Comput , vol.7 , pp. 606-623
    • Mark, O.J.L.1
  • 16
    • 33746862896 scopus 로고    scopus 로고
    • A fast identification algorithm for box-cox transformation based radial basis function neural network
    • Jul
    • X. Hong, "A fast identification algorithm for box-cox transformation based radial basis function neural network," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 1064-1069, Jul. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.4 , pp. 1064-1069
    • Hong, X.1
  • 17
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Jul
    • G.-B. Huang, L. Chen, and C.-K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879-892, Jul. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 18
    • 33746874813 scopus 로고    scopus 로고
    • An incremental training method for the probabilistic RBF network
    • Jul
    • C. Constantinopoulos and A. Likas, "An incremental training method for the probabilistic RBF network," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 966-974, Jul. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.4 , pp. 966-974
    • Constantinopoulos, C.1    Likas, A.2
  • 19
    • 34248671716 scopus 로고    scopus 로고
    • Higher-order-statistics-based radial basis function networks for signal enhancement
    • May
    • B. S. Lin, F. C. Chong, and F. Lai, "Higher-order-statistics-based radial basis function networks for signal enhancement," IEEE Trans. Neural Netw., vol. 18, no. 3, pp. 823-832, May 2007.
    • (2007) IEEE Trans. Neural Netw , vol.18 , Issue.3 , pp. 823-832
    • Lin, B.S.1    Chong, F.C.2    Lai, F.3
  • 20
    • 0026289079 scopus 로고
    • Note on generalization, regularization, and architecture selection in nonlinear learning systems
    • J. E. Moddy, "Note on generalization, regularization, and architecture selection in nonlinear learning systems," in Proc. 1st IEEE-SP Workshop Neural Netw. Signal Process., 1991, pp. 1-11.
    • (1991) Proc. 1st IEEE-SP Workshop Neural Netw. Signal Process , pp. 1-11
    • Moddy, J.E.1
  • 21
    • 0033346092 scopus 로고    scopus 로고
    • Relationship between fault tolerance, generalization and the Vapnik-Cervonenkis (VC) dimension of feedforward ANNs
    • D. S. Phatak, "Relationship between fault tolerance, generalization and the Vapnik-Cervonenkis (VC) dimension of feedforward ANNs," Proc. Int. Joint Conf. Neural Netw., vol. 1, pp. 705-709, 1999.
    • (1999) Proc. Int. Joint Conf. Neural Netw , vol.1 , pp. 705-709
    • Phatak, D.S.1
  • 23
    • 0035507079 scopus 로고    scopus 로고
    • Two regularizers for recursive least square algorithms in feedforward multilayered neural networks
    • Nov
    • C. S. Leung, A. C. Tsoi, and L. W. Chan, "Two regularizers for recursive least square algorithms in feedforward multilayered neural networks," IEEE Trans. Neural Netw., vol. 12, no. 6, pp. 1314-1332, Nov. 2001.
    • (2001) IEEE Trans. Neural Netw , vol.12 , Issue.6 , pp. 1314-1332
    • Leung, C.S.1    Tsoi, A.C.2    Chan, L.W.3
  • 24
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • C. M. Bishop, "Training with noise is equivalent to Tikhonov regularization," Neural Comput., vol. 7, no. 1, pp. 108-116, 1995.
    • (1995) Neural Comput , vol.7 , Issue.1 , pp. 108-116
    • Bishop, C.M.1
  • 25
    • 33144485895 scopus 로고    scopus 로고
    • Generalized RLS approach to the training of neural networks
    • Jan
    • Y. Xu, K. W. Wong, and C. S. Leung, "Generalized RLS approach to the training of neural networks," IEEE Trans. Neural Netw., vol. 17, no. 1, pp. 19-34, Jan. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.17 , Issue.1 , pp. 19-34
    • Xu, Y.1    Wong, K.W.2    Leung, C.S.3
  • 26
    • 0031236925 scopus 로고    scopus 로고
    • Asymptotic statistical theory of overtraining and cross-validation
    • Sep
    • S. I. Amari, N. Murata, K. R. Muller, M. Finke, and H. H. Yang, "Asymptotic statistical theory of overtraining and cross-validation," IEEE Trans. Neural Netw., vol. 8, no. 5, pp. 996-985, Sep. 1997.
    • (1997) IEEE Trans. Neural Netw , vol.8 , Issue.5 , pp. 996-985
    • Amari, S.I.1    Murata, N.2    Muller, K.R.3    Finke, M.4    Yang, H.H.5
  • 27
    • 1842430977 scopus 로고    scopus 로고
    • Sparse modelling using orthogonal forward regression with press statistic and regularization
    • Apr
    • S. Chen, X. Hong, C. J. Harris, and P. M. Sharkey, "Sparse modelling using orthogonal forward regression with press statistic and regularization," IEEE Trans. Syst. Man. Cybern. B, Cybern., vol. 34, no. 2, pp. 898-911, Apr. 2004.
    • (2004) IEEE Trans. Syst. Man. Cybern. B, Cybern , vol.34 , Issue.2 , pp. 898-911
    • Chen, S.1    Hong, X.2    Harris, C.J.3    Sharkey, P.M.4
  • 29
    • 2342475914 scopus 로고    scopus 로고
    • A smoothing regularizer for feedforward and recurrent neural networks
    • J. Moody, "A smoothing regularizer for feedforward and recurrent neural networks," Neural Comput., vol. 8, pp. 461-489, 1996.
    • (1996) Neural Comput , vol.8 , pp. 461-489
    • Moody, J.1
  • 30
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backprop networks
    • D. J. C. Mackay, "A practical Bayesian framework for backprop networks," Neural Comput., vol. 4, pp. 448-472, 1992.
    • (1992) Neural Comput , vol.4 , pp. 448-472
    • Mackay, D.J.C.1
  • 31
    • 0033347007 scopus 로고    scopus 로고
    • On the regularization of forgetting recursive least square
    • Nov
    • C. S. Leung, G. H. Young, J. Sum, and W. K. Kan, "On the regularization of forgetting recursive least square," IEEE Trans. Neural Netw., vol. 10, no. 6, pp. 1482-1486, Nov. 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , Issue.6 , pp. 1482-1486
    • Leung, C.S.1    Young, G.H.2    Sum, J.3    Kan, W.K.4
  • 32
    • 29444447147 scopus 로고    scopus 로고
    • Local regularization assisted orthogonal least squares regression
    • S. Chen, "Local regularization assisted orthogonal least squares regression," Neurocomputing, pp. 559-585, 2006.
    • (2006) Neurocomputing , pp. 559-585
    • Chen, S.1
  • 34
    • 23044466683 scopus 로고    scopus 로고
    • Multiple model regression estimation
    • Jul
    • V. Cherkassky and Y. Ma, "Multiple model regression estimation," IEEE Trans. Neural Netw., vol. 16, no. 4, pp. 785-798, Jul. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.4 , pp. 785-798
    • Cherkassky, V.1    Ma, Y.2
  • 35
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • Cambridge, MA: MIT Press
    • V. Vapnik, S. Golowich, and A. Smola, "Support vector method for function approximation, regression estimation, and signal processing," in Advances in Neural Information Processing Systems 9. Cambridge, MA: MIT Press, 1997, pp. 281-287.
    • (1997) Advances in Neural Information Processing Systems 9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 36
    • 0032635903 scopus 로고    scopus 로고
    • Noise impact on time-series forecasting using an intelligent pattern matching technique
    • S. Singh, "Noise impact on time-series forecasting using an intelligent pattern matching technique," Pattern Recognit., vol. 32, pp. 1389-1398, 1999.
    • (1999) Pattern Recognit , vol.32 , pp. 1389-1398
    • Singh, S.1
  • 37
    • 1842483409 scopus 로고    scopus 로고
    • E. W. M. Lee, C. P. Lim, R. K. K. Yuen, and S. M. Lo, A hybrid neural network model for noisy data regression, IEEE Trans. Syst. Man Cybern. B., Cybern., 34, no. 2, pp. 951-960, Apr. 2004.
    • E. W. M. Lee, C. P. Lim, R. K. K. Yuen, and S. M. Lo, "A hybrid neural network model for noisy data regression," IEEE Trans. Syst. Man Cybern. B., Cybern., vol. 34, no. 2, pp. 951-960, Apr. 2004.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.