-
1
-
-
0000621802
-
Multivariate functional interpolation and adaptive networks
-
Broomhead, D. S. and Lowe, D.: Multivariate functional interpolation and adaptive networks, Complex Systems, 2 321-355.
-
Complex Systems
, vol.2
, pp. 321-355
-
-
Broomhead, D.S.1
Lowe, D.2
-
4
-
-
0027928976
-
Perturbation response in feedforward networks
-
Minai, A. A. and Williams, R. D.: Perturbation response in feedforward networks, Neural Networks, 7(5) (1994), 783-796.
-
(1994)
Neural Networks
, vol.7
, Issue.5
, pp. 783-796
-
-
Minai, A.A.1
Williams, R.D.2
-
5
-
-
0032523512
-
Towards optimally distributed computation
-
Edwards, P. J. and Murray, A. F.: Towards optimally distributed computation, Neural Computation, 10 (1998), 997-1015.
-
(1998)
Neural Computation
, vol.10
, pp. 997-1015
-
-
Edwards, P.J.1
Murray, A.F.2
-
6
-
-
0033359363
-
An accurate measure for multilayer perceptron tolerance to weight deviations
-
Bernier, J. L., Ortega, J., Rodriguez, M. M., Rojas, I. and Prieto, A.: An accurate measure for multilayer perceptron tolerance to weight deviations, Neural Processing Letters, 10(2) (1999), 121-130.
-
(1999)
Neural Processing Letters
, vol.10
, Issue.2
, pp. 121-130
-
-
Bernier, J.L.1
Ortega, J.2
Rodriguez, M.M.3
Rojas, I.4
Prieto, A.5
-
7
-
-
0039178084
-
A quantitative study of fault tolerance, noise immunity and generalization ability of MLPs
-
Bernier, J. L., Ortega, J., Ros, E., Rojas, I. and Prieto, A.: A quantitative study of fault tolerance, noise immunity and generalization ability of MLPs, Neural Computation, 12 (2000); 2941-2964.
-
(2000)
Neural Computation
, vol.12
, pp. 2941-2964
-
-
Bernier, J.L.1
Ortega, J.2
Ros, E.3
Rojas, I.4
Prieto, A.5
-
8
-
-
84943275471
-
Comparative fault tolerance of generalized radial basis function and multilayer perceptron networks
-
Segee, B. E. and Carter, M. J.: Comparative fault tolerance of generalized radial basis function and multilayer perceptron networks, IEEE Int. Conference on Neural Networks, 3 (1993), 1847-1852.
-
(1993)
IEEE Int. Conference on Neural Networks
, vol.3
, pp. 1847-1852
-
-
Segee, B.E.1
Carter, M.J.2
-
9
-
-
0033100605
-
Estimations of error bounds for neural-network function approximators
-
Townsend, N. W. and Tarassenko, L.: Estimations of error bounds for neural-network function approximators, IEEE Trans. on Neural Networks, 10(2) (1999), 217-230.
-
(1999)
IEEE Trans. on Neural Networks
, vol.10
, Issue.2
, pp. 217-230
-
-
Townsend, N.W.1
Tarassenko, L.2
-
11
-
-
0035200563
-
Upper bound of the expected trainig error of neural regression for a gaussian noise sequence
-
Hagiwara, K., Hayasaka, T., Toda, N., Usui, S. and Kuno, K.: Upper bound of the expected trainig error of neural regression for a gaussian noise sequence, Neural Networks, 14 (2001), 1419-1429.
-
(2001)
Neural Networks
, vol.14
, pp. 1419-1429
-
-
Hagiwara, K.1
Hayasaka, T.2
Toda, N.3
Usui, S.4
Kuno, K.5
-
12
-
-
0029748007
-
Fault tolerance parameter model of radial basis function networks
-
Catala, A. and Parra, X.: Fault tolerance parameter model of radial basis function networks, IEEE Int. Conference on Neural Networks, 2 (1996), 1384-1389.
-
(1996)
IEEE Int. Conference on Neural Networks
, vol.2
, pp. 1384-1389
-
-
Catala, A.1
Parra, X.2
-
13
-
-
0028758808
-
Learning algorithms for fault tolerance in radial basis function networks
-
Hegde, M. V., Naraghi-Pour, M. and Bapat, P.: Learning algorithms for fault tolerance in radial basis function networks, Proc 37th Midwest Symposium on Circuits and Systems, 1 (1995), 535-538.
-
(1995)
Proc 37th Midwest Symposium on Circuits and Systems
, vol.1
, pp. 535-538
-
-
Hegde, M.V.1
Naraghi-Pour, M.2
Bapat, P.3
-
14
-
-
0343090465
-
An efficient learning algorithm for improving generalization performance of radial basis function neural networks
-
Wang, Z. and Zhu, T.: An efficient learning algorithm for improving generalization performance of radial basis function neural networks, Neural Networks, 13 (2000) 545-553.
-
(2000)
Neural Networks
, vol.13
, pp. 545-553
-
-
Wang, Z.1
Zhu, T.2
-
15
-
-
0034293872
-
Obtaining fault tolerant multi-layer perceptrons using an explicit regularization
-
Bernier, J. L., Ortega, J., Rojas, I., Ros, E. and Prieto, A.: Obtaining fault tolerant multi-layer perceptrons using an explicit regularization. Neural Processing Letters. 12(2) (2000), 107-113.
-
(2000)
Neural Processing Letters
, vol.12
, Issue.2
, pp. 107-113
-
-
Bernier, J.L.1
Ortega, J.2
Rojas, I.3
Ros, E.4
Prieto, A.5
-
16
-
-
0026625982
-
Sensitivity analysis of multilayer perceptron with differentiable activation functions
-
Choi, J. Y. and Choi, C.: Sensitivity analysis of multilayer perceptron with differentiable activation functions, IEEE Trans. on Neural Networks, 3(1) (1992), 101-107.
-
(1992)
IEEE Trans. on Neural Networks
, vol.3
, Issue.1
, pp. 101-107
-
-
Choi, J.Y.1
Choi, C.2
-
17
-
-
0001740650
-
Training with noise is equivalent to Tikhonov regularization
-
Bishop, C.: Training with noise is equivalent to Tikhonov regularization, Neural Computation, 7(1) (1995), 108-116
-
(1995)
Neural Computation
, vol.7
, Issue.1
, pp. 108-116
-
-
Bishop, C.1
-
18
-
-
0017714604
-
Oscillation and chaos in physiological control systems
-
Mackey, M. C. and Glass, L.: Oscillation and chaos in physiological control systems, Science, 197 (1977), 287-289.
-
(1977)
Science
, vol.197
, pp. 287-289
-
-
Mackey, M.C.1
Glass, L.2
-
19
-
-
0030196823
-
Comparison of adaptive methods for function estimation from samples
-
Cherkassky, V., Gehring, D. and Mulier, F.: Comparison of adaptive methods for function estimation from samples, IEEE Trans. on Neural Networks, 7(4) (1996), 969-984.
-
(1996)
IEEE Trans. on Neural Networks
, vol.7
, Issue.4
, pp. 969-984
-
-
Cherkassky, V.1
Gehring, D.2
Mulier, F.3
-
20
-
-
0004311217
-
-
San Francisco, Holden-Day, CA, 2nd ed.
-
Box, G. E. P. and Jenkins, G. M.: Time Series Analysis, Forecasting and Control. San Francisco, Holden-Day, CA, 2nd ed., 1976.
-
(1976)
Time Series Analysis, Forecasting and Control
-
-
Box, G.E.P.1
Jenkins, G.M.2
-
21
-
-
0742321288
-
Multiobjective evolutionary optimization of the size, shape and position parameters of radial basis function networks for function approximation
-
(in press)
-
Gonzalez, J., Rojas, I., Pomares, H., Fernandez, F. J. and Diaz, A. F.: Multiobjective evolutionary optimization of the size, shape and position parameters of radial basis function networks for function approximation, IEEE Trans. on Neural Networks (in press).
-
IEEE Trans. on Neural Networks
-
-
Gonzalez, J.1
Rojas, I.2
Pomares, H.3
Fernandez, F.J.4
Diaz, A.F.5
|