메뉴 건너뛰기




Volumn 32, Issue 8, 2005, Pages 2151-2169

The accuracy of a procedural approach to specifying feedforward neural networks for forecasting

Author keywords

Backpropagation; Comparative forecasting accuracy; Model specification; Neural networks

Indexed keywords

BACKPROPAGATION; BENCHMARKING; COMPUTER SIMULATION; ERROR ANALYSIS; FORECASTING; MATHEMATICAL MODELS;

EID: 10644282144     PISSN: 03050548     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cor.2004.02.006     Document Type: Article
Times cited : (42)

References (21)
  • 1
    • 35248833159 scopus 로고
    • Neural networks: Forecasting breakthrough or passing fad
    • Chatfield C. Neural networks: forecasting breakthrough or passing fad. International Journal of Forecasting 1993; 9:1-3.
    • (1993) International Journal of Forecasting , vol.9 , pp. 1-3
    • Chatfield, C.1
  • 3
    • 0034288854 scopus 로고    scopus 로고
    • Automatic neural network modeling for univariate time series
    • Balkin SD, Ord JK. Automatic neural network modeling for univariate time series. International Journal of Forecasting 2000;16:509-15.
    • (2000) International Journal of Forecasting , vol.16 , pp. 509-515
    • Balkin, S.D.1    Ord, J.K.2
  • 4
    • 0000032342 scopus 로고    scopus 로고
    • How effective are neural networks at forecasting and prediction? A review and evaluation
    • Adya M, Collopy F. How effective are neural networks at forecasting and prediction? A review and evaluation. Journal of Forecasting 1998;17:481-95.
    • (1998) Journal of Forecasting , vol.17 , pp. 481-495
    • Adya, M.1    Collopy, F.2
  • 8
    • 0009589301 scopus 로고    scopus 로고
    • How to train neural networks
    • Orr GB, Muller KR, editors. Berlin: Springer-Verlag
    • Neuneier R, Zimmermann HG. How to train neural networks. In: Orr GB, Muller KR, editors. Neural networks: tricks of the trade. Berlin: Springer-Verlag; 1998. p. 373-423.
    • (1998) Neural Networks: Tricks of the Trade , pp. 373-423
    • Neuneier, R.1    Zimmermann, H.G.2
  • 9
    • 0039988139 scopus 로고    scopus 로고
    • Time series forecasting with neural networks
    • Faraway J, Chatfield C. Time series forecasting with neural networks. Applied Statistics 1998;47:231-50.
    • (1998) Applied Statistics , vol.47 , pp. 231-250
    • Faraway, J.1    Chatfield, C.2
  • 10
    • 0035314205 scopus 로고    scopus 로고
    • A simulation study of artificial neural networks for nonlinear time-scries forecasting
    • Zhang G, Patuwo BE, Hu MY. A simulation study of artificial neural networks for nonlinear time-scries forecasting. Computers and Operations Research 2001;28:381-96.
    • (2001) Computers and Operations Research , vol.28 , pp. 381-396
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3
  • 12
    • 0013445438 scopus 로고
    • Principles for examining predictive validity: The case of information systems spending forecasts
    • Collopy F, Adya M, Armstrong JS. Principles for examining predictive validity: the case of information systems spending forecasts. Information Systems Research 1994;5(2):170-9.
    • (1994) Information Systems Research , vol.5 , Issue.2 , pp. 170-179
    • Collopy, F.1    Adya, M.2    Armstrong, J.S.3
  • 14
    • 0002847043 scopus 로고
    • The evaluation of extrapolative forecasting methods
    • Fildes R. The evaluation of extrapolative forecasting methods. International Journal of Forecasting 1992;8:81-98.
    • (1992) International Journal of Forecasting , vol.8 , pp. 81-98
    • Fildes, R.1
  • 16
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Rurnelhart DE, McClelland JL, the PDF Research Group, editors. Cambridge, MA: MIT Press
    • Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. In: Rurnelhart DE, McClelland JL, the PDF Research Group, editors. Parallel distributed processing, vol. 1. Cambridge, MA: MIT Press; 1986. p. 318-62.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 18
    • 0002606579 scopus 로고
    • ARARMA models for time series analysis and forecasting
    • Parzen E. ARARMA models for time series analysis and forecasting. Journal of Forecasting 1982;1:67-82.
    • (1982) Journal of Forecasting , vol.1 , pp. 67-82
    • Parzen, E.1
  • 19
    • 0002006114 scopus 로고
    • Error measures for generalising about forecasting methods: Empirical comparisons
    • Armstrong JS, Collopy F. Error measures for generalising about forecasting methods: empirical comparisons. International Journal of Forecasting 1992;8:69-80.
    • (1992) International Journal of Forecasting , vol.8 , pp. 69-80
    • Armstrong, J.S.1    Collopy, F.2
  • 20
    • 0033442924 scopus 로고    scopus 로고
    • A cross-validation analysis of neural network out-of-sample performance of exchange rate forecasting
    • Hu MY, Zhang G, Jiang CX, Patuwo BY. A cross-validation analysis of neural network out-of-sample performance of exchange rate forecasting. Decision Sciences 1999;1 (Winter):197-216.
    • (1999) Decision Sciences , vol.1 , Issue.WINTER , pp. 197-216
    • Hu, M.Y.1    Zhang, G.2    Jiang, C.X.3    Patuwo, B.Y.4
  • 21
    • 0000860595 scopus 로고    scopus 로고
    • Neural network models for time series forecasts
    • Hill T, O'Connor M, Remus W. Neural network models for time series forecasts. Management Science 1996;42: 1082-92.
    • (1996) Management Science , vol.42 , pp. 1082-1092
    • Hill, T.1    O'Connor, M.2    Remus, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.