메뉴 건너뛰기




Volumn 2000-January, Issue , 2000, Pages 203-206

GA Tree: Genetically evolved decision trees

Author keywords

Current measurement; Decision trees; Gain measurement; Genetic algorithms; Impurities; Induction generators; Machine learning; Machine learning algorithms; Measurement standards; Medical diagnostic imaging

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; ASYNCHRONOUS GENERATORS; DECISION TREES; DIAGNOSIS; ELECTRIC CURRENT MEASUREMENT; FORESTRY; GAIN MEASUREMENT; GENETIC ALGORITHMS; IMPURITIES; LEARNING SYSTEMS; MEDICAL IMAGING;

EID: 84949680505     PISSN: 10823409     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/TAI.2000.889871     Document Type: Conference Paper
Times cited : (40)

References (29)
  • 1
    • 0002431740 scopus 로고    scopus 로고
    • Automatic construction of decision trees from data: A multidisciplinary survey
    • Murthy S., K (1998). Automatic construction of decision trees from data: A multidisciplinary survey. Data Mining and Knowledge Discovery.
    • (1998) Data Mining and Knowledge Discovery
    • Murthy, S.K.1
  • 2
    • 33744584654 scopus 로고
    • Induction of decision trees
    • 1986
    • Quinlan, R. (1986). Induction of decision trees, Machine Learning, 1:81-106,1986
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, R.1
  • 6
    • 0003586436 scopus 로고
    • Doctoral dissertation, Department of Electrical Engineering and Computer Science, Univercity of Michigan
    • Fayyad, M.U. (1991). On the Induction of Decision Trees for Multiple Concept Learning, Doctoral dissertation, Department of Electrical Engineering and Computer Science, Univercity of Michigan.
    • (1991) On the Induction of Decision Trees for Multiple Concept Learning
    • Fayyad, M.U.1
  • 10
    • 0027696338 scopus 로고
    • Using genetic algorithms for concept learning
    • DeJong, K.A., Spears, W. M., & Gordon, D.F. (1993). Using genetic algorithms for concept learning. Machine Learning, 13, 161-188.
    • (1993) Machine Learning , vol.13 , pp. 161-188
    • DeJong, K.A.1    Spears, W.M.2    Gordon, D.F.3
  • 11
    • 0027696178 scopus 로고
    • A knowledge-intensive genetic algorithm for supervised learning
    • Janikow, C., Z. (1993) A knowledge-intensive genetic algorithm for supervised learning, Machine Learning, 13,189-228.
    • (1993) Machine Learning , vol.13 , pp. 189-228
    • Janikow, C.Z.1
  • 15
    • 0000865580 scopus 로고
    • Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic Decision Tree Induction Algorithm
    • Turney, D.P (1995). Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic Decision Tree Induction Algorithm. Journal of Artificial Intelligence Research, 2, 369-409.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 369-409
    • Turney, D.P.1
  • 18
    • 0001259758 scopus 로고
    • Overfitting avoidance as bias
    • Schaffer, C. (1993). Overfitting avoidance as bias, Machine Learning, 10, 153-178
    • (1993) Machine Learning , vol.10 , pp. 153-178
    • Schaffer, C.1
  • 19
    • 0016331864 scopus 로고
    • Performance bounds on the splitting algorithm for binary testing
    • Fasc. 4
    • Garey R., M, and Graham L.,R (1974) Performance bounds on the splitting algorithm for binary testing. Acta Informatica, 3(Fasc. 4):347-355.
    • (1974) Acta Informatica , vol.3 , pp. 347-355
    • Garey, R.M.1    Graham, L.R.2
  • 21
    • 0002591462 scopus 로고
    • Lookahead Feature Construction for Learning Hard Concepts
    • Amherst, MA, (Morgan Kaufmann, San Francisco, CA)
    • Ragavan, H. and L. Rendell (1993), Lookahead Feature Construction for Learning Hard Concepts, Proceedings of the Tenth International Conference on Machine Learning, Amherst, MA, pp. 252-259 (Morgan Kaufmann, San Francisco, CA).
    • (1993) Proceedings of the Tenth International Conference on Machine Learning , pp. 252-259
    • Ragavan, H.1    Rendell, L.2
  • 28
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte, R.C. (1993). Very simple classification rules perform well on most commonly used datasets, Machine Learning 11,63-91.
    • (1993) Machine Learning , vol.11 , pp. 63-91
    • Holte, R.C.1
  • 29
    • 84863387880 scopus 로고    scopus 로고
    • Irvine, CA: Department of Information and Computer Science
    • Blake, C., Keogh, E., & Merz, J. (2000) UCI Repository of machine learning databases [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Information and Computer Science.
    • (2000) UCI Repository of Machine Learning Databases
    • Blake, C.1    Keogh, E.2    Merz, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.