메뉴 건너뛰기




Volumn 40, Issue 3, 2008, Pages 345-353

Proofs as bearers of mathematical knowledge

Author keywords

[No Author keywords available]

Indexed keywords


EID: 77952094198     PISSN: 18639690     EISSN: 18639704     Source Type: Journal    
DOI: 10.1007/s11858-008-0080-5     Document Type: Article
Times cited : (50)

References (29)
  • 1
    • 33750723489 scopus 로고    scopus 로고
    • Mathematical method and proof
    • Avigad, J. (2006). Mathematical method and proof. Synthese, 153(1), 105-159.
    • (2006) Synthese , vol.153 , Issue.1 , pp. 105-159
    • Avigad, J.1
  • 3
    • 84867380444 scopus 로고
    • Which method is best?
    • Barbeau, E. (1988). Which method is best? Mathematics Teacher, 81, 87-90.
    • (1988) Mathematics Teacher , vol.81 , pp. 87-90
    • Barbeau, E.1
  • 4
    • 0002122056 scopus 로고
    • A study of pupils' proof-explanations in mathematical situations
    • Bell, A. (1976). A study of pupils' proof-explanations in mathematical situations. Educational Studies in Mathematics, 7, 23-40.
    • (1976) Educational Studies in Mathematics , vol.7 , pp. 23-40
    • Bell, A.1
  • 6
    • 0001593253 scopus 로고    scopus 로고
    • How the alternating sign matrix conjecture was solved
    • Bressoud, D., & Propp, J. (1999). How the alternating sign matrix conjecture was solved. Notices of the AMS, 46(6), 637-646.
    • (1999) Notices of the AMS , vol.46 , Issue.6 , pp. 637-646
    • Bressoud, D.1    Propp, J.2
  • 8
    • 33749603945 scopus 로고    scopus 로고
    • Why do mathematicians re-prove theorems?
    • Dawson, J.W. (2006). Why do mathematicians re-prove theorems? Philosophia Mathematica, 14, 269-286.
    • (2006) Philosophia Mathematica , vol.14 , pp. 269-286
    • Dawson, J.W.1
  • 9
    • 4544306190 scopus 로고
    • The role and function of proof in mathematics
    • DeVilliers, M. (1990). The role and function of proof in mathematics. Pythagoras, 24, 7-24.
    • (1990) Pythagoras , vol.24 , pp. 7-24
    • DeVilliers, M.1
  • 11
    • 0008785255 scopus 로고    scopus 로고
    • Intuition and schemata in mathematical reasoning
    • Fischbein, E. (1999). Intuition and schemata in mathematical reasoning. Educational Studies in Mathematics, 38(1-3), 11-50.
    • (1999) Educational Studies in Mathematics , vol.38 , Issue.1-3 , pp. 11-50
    • Fischbein, E.1
  • 12
    • 0002952407 scopus 로고
    • Some pedagogical aspects of proof
    • Hanna, G. (1990). Some pedagogical aspects of proof. Interchange, 21(1), 6-13.
    • (1990) Interchange , vol.21 , Issue.1 , pp. 6-13
    • Hanna, G.1
  • 13
    • 0141877309 scopus 로고    scopus 로고
    • The ongoing value of proof in mathematics education
    • Hanna, G. (1997). The ongoing value of proof in mathematics education. Journal für Mathematik Didaktik, 2/3(97), 171-185.
    • (1997) Journal für Mathematik Didaktik , vol.2-3 , Issue.97 , pp. 171-185
    • Hanna, G.1
  • 15
    • 0009576203 scopus 로고    scopus 로고
    • The curricular shaping of students' approaches to proof
    • Hoyles, C. (1997). The curricular shaping of students' approaches to proof. For the Learning of Mathematics, 17(1), 7-16.
    • (1997) For the Learning of Mathematics , vol.17 , Issue.1 , pp. 7-16
    • Hoyles, C.1
  • 16
    • 34547675801 scopus 로고    scopus 로고
    • Modelling mathematical argumentation: The importance of qualification
    • Inglis, M., Mejia-Ramos, J.P., & Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66(1), 3-21.
    • (2007) Educational Studies in Mathematics , vol.66 , Issue.1 , pp. 3-21
    • Inglis, M.1    Mejia-Ramos, J.P.2    Simpson, A.3
  • 20
    • 21344463746 scopus 로고    scopus 로고
    • The development of the idea of mathematical proof: A 5-year case study
    • Maher, C.A., & Martino, A.M. (1996). The development of the idea of mathematical proof: A 5-year case study. Journal for Research in Mathematics Education, 27(2), 194-214.
    • (1996) Journal for Research in Mathematics Education , vol.27 , Issue.2 , pp. 194-214
    • Maher, C.A.1    Martino, A.M.2
  • 23
    • 34547676442 scopus 로고    scopus 로고
    • How can the relationship between argumentation and proof be analysed?
    • Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66(1), 23-41.
    • (2007) Educational Studies in Mathematics , vol.66 , Issue.1 , pp. 23-41
    • Pedemonte, B.1
  • 24
    • 0010424484 scopus 로고    scopus 로고
    • Why do we prove theorems?
    • Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica, 7(1), 5-41.
    • (1999) Philosophia Mathematica , vol.7 , Issue.1 , pp. 5-41
    • Rav, Y.1
  • 26
    • 0013002317 scopus 로고
    • Unpacking the logic of mathematical statements
    • Selden, J., & Selden, A. (1995). Unpacking the logic of mathematical statements. Educational Studies in Mathematics, 29(2), 123-151.
    • (1995) Educational Studies in Mathematics , vol.29 , Issue.2 , pp. 123-151
    • Selden, J.1    Selden, A.2
  • 27
    • 85011464976 scopus 로고    scopus 로고
    • Case studies of mathematics majors' proof understanding, production, and appreciation
    • Sowder, L., & Harel, G. (2003). Case studies of mathematics majors' proof understanding, production, and appreciation. Canadian Journal of Science Mathematics and Technology Education, 3(2), 251-267.
    • (2003) Canadian Journal of Science Mathematics and Technology Education , vol.3 , Issue.2 , pp. 251-267
    • Sowder, L.1    Harel, G.2
  • 29
    • 3543018811 scopus 로고    scopus 로고
    • Reasoning and proof
    • In J. Kilpatrick, W.G. Martin, & D. Schifter (Eds.),. Reston: National Council of Teachers of Mathematics
    • Yackel, E., & Hanna, G. (2003). Reasoning and proof. In J. Kilpatrick, W.G. Martin, & D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 227-236). Reston: National Council of Teachers of Mathematics.
    • (2003) A research companion to principles and standards for school mathematics , pp. 227-236
    • Yackel, E.1    Hanna, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.