-
1
-
-
0022902645
-
Sequential cell and tissue interactions governing organogenesis of the kidney
-
Saxen L, Sariola H, Lehtonen E. 1986. Sequential cell and tissue interactions governing organogenesis of the kidney. Anat. Embryol. (Berl.) 175:1-6
-
(1986)
Anat. Embryol. (Berl.)
, vol.175
, pp. 1-6
-
-
Saxen, L.1
Sariola, H.2
Lehtonen, E.3
-
2
-
-
33751161268
-
The cellular basis of kidney development
-
Dressler GR. 2006. The cellular basis of kidney development. Annu. Rev. Cell Dev. Biol. 22:509-529
-
(2006)
Annu. Rev. Cell Dev. Biol.
, vol.22
, pp. 509-529
-
-
Dressler, G.R.1
-
3
-
-
0028103739
-
Embryonic expression of Lim-1, the mouse homolog of Xenopus Xlim-1, suggests a role in lateral mesoderm differentiation and neurogenesis
-
Barnes JD, Crosby JL, Jones CM, Wright CV, Hogan BL. 1994. Embryonic expression of Lim-1, the mouse homolog of Xenopus Xlim-1, suggests a role in lateral mesoderm differentiation and neurogenesis. Dev. Biol. 161:168-178
-
(1994)
Dev. Biol.
, vol.161
, pp. 168-178
-
-
Barnes, J.D.1
Crosby, J.L.2
Jones, C.M.3
Wright, C.V.4
Hogan, B.L.5
-
4
-
-
0025118546
-
Pax2, a new murine paired-boxcontaining gene and its expression in the developing excretory system
-
Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P. 1990. Pax2, a new murine paired-boxcontaining gene and its expression in the developing excretory system. Development 109:787-795
-
(1990)
Development
, vol.109
, pp. 787-795
-
-
Dressler, G.R.1
Deutsch, U.2
Chowdhury, K.3
Nornes, H.O.4
Gruss, P.5
-
5
-
-
15844426332
-
Defects in enteric innervation and kidney development in mice lacking GDNF
-
Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, et al. 1996. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73-76
-
(1996)
Nature
, vol.382
, pp. 73-76
-
-
Pichel, J.G.1
Shen, L.2
Sheng, H.Z.3
Granholm, A.C.4
Drago, J.5
-
6
-
-
22944463010
-
Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system
-
Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP. 2005. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev. Cell 9:283-292
-
(2005)
Dev. Cell
, vol.9
, pp. 283-292
-
-
Carroll, T.J.1
Park, J.S.2
Hayashi, S.3
Majumdar, A.4
McMahon, A.P.5
-
7
-
-
0032708307
-
Mesenchymal to epithelial conversion in rat metanephros is induced by LIF
-
Barasch J, Yang J,Ware CB, Taga T, Yoshida K, et al. 1999. Mesenchymal to epithelial conversion in rat metanephros is induced by LIF. Cell 99:377-386
-
(1999)
Cell
, vol.99
, pp. 377-386
-
-
Barasch, J.1
Yang Jware, C.B.2
Taga, T.3
Yoshida, K.4
-
8
-
-
0036783551
-
Metanephric mesenchyme contains embryonic renal stem cells
-
Oliver JA, Barasch J, Yang J, Herzlinger D, Al-Awqati Q. 2002. Metanephric mesenchyme contains embryonic renal stem cells. Am. J. Physiol. Renal Physiol. 283:F799-809
-
(2002)
Am. J. Physiol. Renal Physiol.
, vol.283
-
-
Oliver, J.A.1
Barasch, J.2
Yang, J.3
Herzlinger, D.4
Al-Awqati, Q.5
-
9
-
-
0037231480
-
Human and porcine early kidney precursors as a new source for transplantation
-
Dekel B, Burakova T, Arditti FD, Reich-Zeliger S, Milstein O, et al. 2003. Human and porcine early kidney precursors as a new source for transplantation. Nat. Med. 9:53-60
-
(2003)
Nat. Med.
, vol.9
, pp. 53-60
-
-
Dekel, B.1
Burakova, T.2
Arditti, F.D.3
Reich-Zeliger, S.4
Milstein, O.5
-
10
-
-
48149095359
-
Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development
-
Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, et al. 2008. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3:169-181
-
(2008)
Cell Stem Cell
, vol.3
, pp. 169-181
-
-
Kobayashi, A.1
Valerius, M.T.2
Mugford, J.W.3
Carroll, T.J.4
Self, M.5
-
11
-
-
33750455113
-
Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney
-
Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, et al. 2006. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J. 25:5214-5228
-
(2006)
EMBO J.
, vol.25
, pp. 5214-5228
-
-
Self, M.1
Lagutin, O.V.2
Bowling, B.3
Hendrix, J.4
Cai, Y.5
-
12
-
-
67349148976
-
Paraxial mesoderm contributes stromal cells to the developing kidney
-
Guillaume R, Bressan M, Herzlinger D. 2009. Paraxial mesoderm contributes stromal cells to the developing kidney. Dev. Biol. 329:169-175
-
(2009)
Dev. Biol.
, vol.329
, pp. 169-175
-
-
Guillaume, R.1
Bressan, M.2
Herzlinger, D.3
-
13
-
-
0029887230
-
Endogenous origin of glomerular endothelial and mesangial cells in grafts of embryonic kidneys
-
Hyink DP, Tucker DC, St John PL, Leardkamolkarn V, Accavitti MA, et al. 1996. Endogenous origin of glomerular endothelial and mesangial cells in grafts of embryonic kidneys. Am. J. Physiol. 270:F886-99
-
(1996)
Am. J. Physiol.
, vol.270
-
-
Hyink, D.P.1
Tucker, D.C.2
St John, P.L.3
Leardkamolkarn, V.4
Accavitti, M.A.5
-
14
-
-
0037310161
-
Morphological insights into the origin of glomerular endothelial and mesangial cells and their precursors
-
Ricono JM,Xu YC, Arar M, Jin DC, Barnes JL, Abboud HE. 2003. Morphological insights into the origin of glomerular endothelial and mesangial cells and their precursors. J. Histochem. Cytochem. 51:141-150
-
(2003)
J. Histochem. Cytochem.
, vol.51
, pp. 141-150
-
-
Ricono Jmxu, Y.C.1
Arar, M.2
Jin, D.C.3
Barnes, J.L.4
Abboud, H.E.5
-
15
-
-
0035196183
-
Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling
-
Ito T, Suzuki A, Imai E, Okabe M, Hori M. 2001. Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J. Am. Soc. Nephrol. 12:2625-2635 (Pubitemid 33115409)
-
(2001)
Journal of the American Society of Nephrology
, vol.12
, Issue.12
, pp. 2625-2635
-
-
Ito, T.1
Suzuki, A.2
Imai, E.3
Okabe, M.4
Hori, M.5
-
16
-
-
36448952268
-
Differentiation of human mesenchymal stem cells into mesangial cells in post-glomerular injury murine model
-
Wong CY, Cheong SK, Mok PL, Leong CF. 2008. Differentiation of human mesenchymal stem cells into mesangial cells in post-glomerular injury murine model. Pathology 40:52-57
-
(2008)
Pathology
, vol.40
, pp. 52-57
-
-
Wong, C.Y.1
Cheong, S.K.2
Mok, P.L.3
Leong, C.F.4
-
17
-
-
0642303150
-
Endothelial progenitor cells: Mainly derived from the monocyte/macrophage-containing CD34-mononuclear cell population and only in part from the hematopoietic stem cell-containing CD34+ mononuclear cell population
-
Rookmaaker MB,Vergeer M, van Zonneveld AJ, Rabelink TJ,VerhaarMC.2003. Endothelial progenitor cells: mainly derived from the monocyte/macrophage- containing CD34-mononuclear cell population and only in part from the hematopoietic stem cell-containing CD34+ mononuclear cell population. Circulation 108:e150
-
(2003)
Circulation
, vol.108
-
-
Rookmaaker, M.B.1
Vergeer, M.2
Van Zonneveld, A.J.3
Rabelink, T.J.4
Verhaarmc5
-
18
-
-
0029794096
-
Evidence that embryonic kidney cells expressing flk-1 are intrinsic, vasculogenic angioblasts
-
Robert B, St John PL, Hyink DP, Abrahamson DR. 1996. Evidence that embryonic kidney cells expressing flk-1 are intrinsic, vasculogenic angioblasts. Am. J. Physiol. 271:F744-53
-
(1996)
Am. J. Physiol.
, vol.271
-
-
Robert, B.1
St John, P.L.2
Hyink, D.P.3
Abrahamson, D.R.4
-
19
-
-
0033840069
-
Coexpression of neuropilin-1, Flk1, and VEGF(164) in developing and mature mouse kidney glomeruli
-
Robert B, Zhao X, Abrahamson DR. 2000. Coexpression of neuropilin-1, Flk1, and VEGF(164) in developing and mature mouse kidney glomeruli. Am. J. Physiol. Renal Physiol. 279:F275-82
-
(2000)
Am. J. Physiol. Renal Physiol.
, vol.279
-
-
Robert, B.1
Zhao, X.2
Abrahamson, D.R.3
-
20
-
-
68049123542
-
The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature
-
Takabatake Y, Sugiyama T, Kohara H, Matsusaka T, Kurihara H, et al. 2009. The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature. J. Am. Soc. Nephrol. 20:1714-1723
-
(2009)
J. Am. Soc. Nephrol.
, vol.20
, pp. 1714-1723
-
-
Takabatake, Y.1
Sugiyama, T.2
Kohara, H.3
Matsusaka, T.4
Kurihara, H.5
-
21
-
-
0032158920
-
Origins and formation of microvasculature in the developing kidney
-
Abrahamson DR, Robert B, Hyink DP, St John PL, Daniel TO. 1998. Origins and formation of microvasculature in the developing kidney. Kidney Int. Suppl. 67:S7-11
-
(1998)
Kidney Int. Suppl.
, vol.67
-
-
Abrahamson, D.R.1
Robert, B.2
Hyink, D.P.3
St John, P.L.4
Daniel, T.O.5
-
22
-
-
0028896193
-
Human acute tubular necrosis: A lectin and immunohistochemical study
-
Nadasdy T, Laszik Z, Blick KE, Johnson DL, Burst-Singer K, et al. 1995. Human acute tubular necrosis: a lectin and immunohistochemical study. Hum. Pathol. 26:230-239
-
(1995)
Hum. Pathol.
, vol.26
, pp. 230-239
-
-
Nadasdy, T.1
Laszik, Z.2
Blick, K.E.3
Johnson, D.L.4
Burst-Singer, K.5
-
23
-
-
0037836057
-
Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure
-
Bonventre JV. 2003. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J. Am. Soc. Nephrol. 14:S55-61
-
(2003)
J. Am. Soc. Nephrol.
, vol.14
-
-
Bonventre, J.V.1
-
24
-
-
20444386913
-
Expression of NCAM recapitulates tubulogenic development in kidneys recovering from acute ischemia
-
Abbate M, Brown D, Bonventre JV. 1999. Expression of NCAM recapitulates tubulogenic development in kidneys recovering from acute ischemia. Am. J. Physiol. 277:F454-63
-
(1999)
Am. J. Physiol.
, vol.277
-
-
Abbate, M.1
Brown, D.2
Bonventre, J.V.3
-
26
-
-
0028273536
-
Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells
-
Witzgall R, Brown D, Schwarz C, Bonventre JV. 1994. Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J. Clin. Investig. 93:2175-2188
-
(1994)
J. Clin. Investig.
, vol.93
, pp. 2175-2188
-
-
Witzgall, R.1
Brown, D.2
Schwarz, C.3
Bonventre, J.V.4
-
27
-
-
22144474392
-
Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney
-
Lin F, Moran A, Igarashi P. 2005. Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J. Clin. Investig. 115:1756-1764
-
(2005)
J. Clin. Investig.
, vol.115
, pp. 1756-1764
-
-
Lin, F.1
Moran, A.2
Igarashi, P.3
-
28
-
-
57149105572
-
Increased Zag expression during normal aging suppresses proliferative responses to kidney injury
-
Schmitt R, Marlier A, Cantley LG. 2008. Increased Zag expression during normal aging suppresses proliferative responses to kidney injury. J. Am. Soc. Nephrol. 19(12):2375-2383
-
(2008)
J. Am. Soc. Nephrol.
, vol.19
, Issue.12
, pp. 2375-2383
-
-
Schmitt, R.1
Marlier, A.2
Cantley, L.G.3
-
29
-
-
0035095215
-
Expression of osteopontin in gentamicininduced acute tubular necrosis and its recovery process
-
Xie Y, Nishi S, Iguchi S, Imai N, Sakatsume M, et al. 2001. Expression of osteopontin in gentamicininduced acute tubular necrosis and its recovery process. Kidney Int. 59:959-974
-
(2001)
Kidney Int.
, vol.59
, pp. 959-974
-
-
Xie, Y.1
Nishi, S.2
Iguchi, S.3
Imai, N.4
Sakatsume, M.5
-
30
-
-
0345530117
-
Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney
-
Maeshima A, Yamashita S, Nojima Y. 2003. Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J. Am. Soc. Nephrol. 14:3138-3146
-
(2003)
J. Am. Soc. Nephrol.
, vol.14
, pp. 3138-3146
-
-
Maeshima, A.1
Yamashita, S.2
Nojima, Y.3
-
31
-
-
27744571294
-
Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney
-
Kitamura S, Yamasaki Y, Kinomura M, Sugaya T, Sugiyama H, et al. 2005. Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J. 19:1789-1797
-
(2005)
FASEB J.
, vol.19
, pp. 1789-1797
-
-
Kitamura, S.1
Yamasaki, Y.2
Kinomura, M.3
Sugaya, T.4
Sugiyama, H.5
-
32
-
-
33750702156
-
Isolation and characterization of kidney-derived stem cells
-
Gupta S, Verfaillie C, Chmielewski D, Kren S, Eidman K, et al. 2006. Isolation and characterization of kidney-derived stem cells. J. Am. Soc. Nephrol. 17:3028-3040
-
(2006)
J. Am. Soc. Nephrol.
, vol.17
, pp. 3028-3040
-
-
Gupta, S.1
Verfaillie, C.2
Chmielewski, D.3
Kren, S.4
Eidman, K.5
-
33
-
-
59949085566
-
NFATc1 identifies a population of proximal tubule cell progenitors
-
Langworthy M, Zhou B, de Caestecker M, Moeckel G, Baldwin HS. 2009.NFATc1 identifies a population of proximal tubule cell progenitors. J. Am. Soc. Nephrol. 20:311-321
-
(2009)
J. Am. Soc. Nephrol.
, vol.20
, pp. 311-321
-
-
Langworthy, M.1
Zhou, B.2
De Caestecker, M.3
Moeckel, G.4
Baldwin, H.S.5
-
34
-
-
34547689284
-
The adult Drosophila malpighian tubules are maintained by multipotent stem cells
-
Singh SR, Liu W, Hou SX. 2007. The adult Drosophila malpighian tubules are maintained by multipotent stem cells. Cell Stem Cell 1:191-203
-
(2007)
Cell Stem Cell
, vol.1
, pp. 191-203
-
-
Singh, S.R.1
Liu, W.2
Hou, S.X.3
-
35
-
-
9644283066
-
The renal papilla is a niche for adult kidney stem cells
-
Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q. 2004. The renal papilla is a niche for adult kidney stem cells. J. Clin. Investig. 114:795-804
-
(2004)
J. Clin. Investig.
, vol.114
, pp. 795-804
-
-
Oliver, J.A.1
Maarouf, O.2
Cheema, F.H.3
Martens, T.P.4
Al-Awqati, Q.5
-
36
-
-
0024523631
-
Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: Implications on epithelial stem cells
-
Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM. 1989. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201-209
-
(1989)
Cell
, vol.57
, pp. 201-209
-
-
Cotsarelis, G.1
Cheng, S.Z.2
Dong, G.3
Sun, T.T.4
Lavker, R.M.5
-
37
-
-
4344675053
-
Identifying the molecular phenotype of renal progenitor cells
-
Challen GA, Martinez G, Davis MJ, Taylor DF, Crowe M, et al. 2004. Identifying the molecular phenotype of renal progenitor cells. J. Am. Soc. Nephrol. 15:2344-2357
-
(2004)
J. Am. Soc. Nephrol.
, vol.15
, pp. 2344-2357
-
-
Challen, G.A.1
Martinez, G.2
Davis, M.J.3
Taylor, D.F.4
Crowe, M.5
-
38
-
-
0034687840
-
Direct isolation of human central nervous system stem cells
-
Uchida N, Buck DW, He D, Reitsma MJ, Masek M, et al. 2000. Direct isolation of human central nervous system stem cells. Proc. Natl. Acad. Sci. USA 97:14720-14725
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 14720-14725
-
-
Uchida, N.1
Buck, D.W.2
He, D.3
Reitsma, M.J.4
Masek, M.5
-
39
-
-
12944253116
-
Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors
-
Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, et al. 2000. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95:952-958
-
(2000)
Blood
, vol.95
, pp. 952-958
-
-
Peichev, M.1
Naiyer, A.J.2
Pereira, D.3
Zhu, Z.4
Lane, W.J.5
-
40
-
-
0039765237
-
The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions
-
Corbeil D, Roper K, Hellwig A, Tavian M, Miraglia S, et al. 2000. The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J. Biol. Chem. 275:5512-5520
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 5512-5520
-
-
Corbeil, D.1
Roper, K.2
Hellwig, A.3
Tavian, M.4
Miraglia, S.5
-
41
-
-
13244251415
-
Isolation of renal progenitor cells from adult human kidney
-
Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, et al. 2005. Isolation of renal progenitor cells from adult human kidney. Am. J. Pathol. 166:545-555
-
(2005)
Am. J. Pathol.
, vol.166
, pp. 545-555
-
-
Bussolati, B.1
Bruno, S.2
Grange, C.3
Buttiglieri, S.4
Deregibus, M.C.5
-
42
-
-
0347004678
-
Mesenchymal stem cells
-
Short B, Brouard N, Occhiodoro-Scott T, Ramakrishnan A, Simmons PJ. 2003. Mesenchymal stem cells. Arch. Med. Res. 34:565-571
-
(2003)
Arch. Med. Res.
, vol.34
, pp. 565-571
-
-
Short, B.1
Brouard, N.2
Occhiodoro-Scott, T.3
Ramakrishnan, A.4
Simmons, P.J.5
-
43
-
-
33749418694
-
Mesenchymal cells from adult kidney support angiogenesis and differentiate into multiple interstitial cell types including erythropoietin-producing fibroblasts
-
Plotkin MD, Goligorsky MS. 2006. Mesenchymal cells from adult kidney support angiogenesis and differentiate into multiple interstitial cell types including erythropoietin-producing fibroblasts. Am. J. Physiol. Renal Physiol. 291:F902-12
-
(2006)
Am. J. Physiol. Renal Physiol.
, vol.291
-
-
Plotkin, M.D.1
Goligorsky, M.S.2
-
44
-
-
51849154952
-
Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair
-
Chen J, Park HC, Addabbo F, Ni J, Pelger E, et al. 2008. Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair. Kidney Int. 74:879-889
-
(2008)
Kidney Int.
, vol.74
, pp. 879-889
-
-
Chen, J.1
Park, H.C.2
Addabbo, F.3
Ni, J.4
Pelger, E.5
-
45
-
-
11144356832
-
Homing of in vitro expanded Stro-1-or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment
-
Bensidhoum M, Chapel A, Francois S, Demarquay C, Mazurier C, et al. 2004. Homing of in vitro expanded Stro-1-or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood 103:3313-3319
-
(2004)
Blood
, vol.103
, pp. 3313-3319
-
-
Bensidhoum, M.1
Chapel, A.2
Francois, S.3
Demarquay, C.4
Mazurier, C.5
-
47
-
-
0035805055
-
Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell
-
Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, et al. 2001. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369-377
-
(2001)
Cell
, vol.105
, pp. 369-377
-
-
Krause, D.S.1
Theise, N.D.2
Collector, M.I.3
Henegariu, O.4
Hwang, S.5
-
48
-
-
0033694301
-
Purified hematopoietic stem cells can differentiate into hepatocytes in vivo
-
Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, et al. 2000. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 6:1229-1234
-
(2000)
Nat. Med.
, vol.6
, pp. 1229-1234
-
-
Lagasse, E.1
Connors, H.2
Al-Dhalimy, M.3
Reitsma, M.4
Dohse, M.5
-
49
-
-
0037364517
-
In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion
-
Ianus A, Holz GG, Theise ND, Hussain MA. 2003. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J. Clin. Investig. 111:843-850
-
(2003)
J. Clin. Investig.
, vol.111
, pp. 843-850
-
-
Ianus, A.1
Holz, G.G.2
Theise, N.D.3
Hussain, M.A.4
-
50
-
-
0242495039
-
Plasticity of marrow-derived stem cells
-
Herzog EL, Chai L, Krause DS. 2003. Plasticity of marrow-derived stem cells. Blood 102:3483-3493
-
(2003)
Blood
, vol.102
, pp. 3483-3493
-
-
Herzog, E.L.1
Chai, L.2
Krause, D.S.3
-
51
-
-
0037183884
-
Little evidence for developmental plasticity of adult hematopoietic stem cells
-
Wagers AJ, Sherwood RI, Christensen JL,Weissman IL. 2002. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297:2256-2259
-
(2002)
Science
, vol.297
, pp. 2256-2259
-
-
Wagers, A.J.1
Sherwood, R.I.2
Christensen, J.L.3
Weissman, I.L.4
-
52
-
-
1542328965
-
Plasticity of adult stem cells
-
Wagers AJ,Weissman IL. 2004. Plasticity of adult stem cells. Cell 116:639-648
-
(2004)
Cell
, vol.116
, pp. 639-648
-
-
Wagers, A.J.1
Weissman, I.L.2
-
53
-
-
0034802106
-
Bone marrow contributes to renal parenchymal turnover and regeneration
-
Poulsom R, Forbes SJ, Hodivala-Dilke K, Ryan E, Wyles S, et al. 2001. Bone marrow contributes to renal parenchymal turnover and regeneration. J. Pathol. 195:229-235
-
(2001)
J. Pathol.
, vol.195
, pp. 229-235
-
-
Poulsom, R.1
Forbes, S.J.2
Hodivala-Dilke, K.3
Ryan, E.4
Wyles, S.5
-
54
-
-
0036380899
-
A role for extrarenal cells in the regeneration following acute renal failure
-
Gupta S, Verfaillie C, Chmielewski D, Kim Y, Rosenberg ME. 2002. A role for extrarenal cells in the regeneration following acute renal failure. Kidney Int. 62:1285-1290
-
(2002)
Kidney Int.
, vol.62
, pp. 1285-1290
-
-
Gupta, S.1
Verfaillie, C.2
Chmielewski, D.3
Kim, Y.4
Rosenberg, M.E.5
-
55
-
-
85047689644
-
Bone marrow stem cells contribute to repair of the ischemically injured renal tubule
-
Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG. 2003. Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J. Clin. Investig. 112:42-49
-
(2003)
J. Clin. Investig.
, vol.112
, pp. 42-49
-
-
Kale, S.1
Karihaloo, A.2
Clark, P.R.3
Kashgarian, M.4
Krause, D.S.5
Cantley, L.G.6
-
56
-
-
1942538448
-
Hematopoietic stem cell mobilization-associated granulocytosis severely worsens acute renal failure
-
Togel F, Isaac J,Westenfelder C. 2004. Hematopoietic stem cell mobilization-associated granulocytosis severely worsens acute renal failure. J. Am. Soc. Nephrol. 15:1261-1267
-
(2004)
J. Am. Soc. Nephrol.
, vol.15
, pp. 1261-1267
-
-
Togel, F.1
Isaac, J.2
Westenfelder, C.3
-
57
-
-
17744387942
-
Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury
-
Togel F, Isaac J, Hu Z,Weiss K,Westenfelder C. 2005. Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int. 67:1772-1784
-
(2005)
Kidney Int.
, vol.67
, pp. 1772-1784
-
-
Togel, F.1
Isaac, J.2
Hu Zweiss, K.3
Westenfelder, C.4
-
58
-
-
2442675326
-
Ischemia-reperfusion induces G-CSF gene expression by renal medullary thick ascending limb cells in vivo and in vitro
-
Zhang Y,Woodward VK, Shelton JM, Richardson JA, Zhou XJ, et al. 2004. Ischemia-reperfusion induces G-CSF gene expression by renal medullary thick ascending limb cells in vivo and in vitro. Am. J. Physiol. Renal Physiol. 286:F1193-201
-
(2004)
Am. J. Physiol. Renal Physiol.
, vol.286
-
-
Zhang, Y.1
Woodward, V.K.2
Shelton, J.M.3
Richardson, J.A.4
Zhou, X.J.5
-
59
-
-
0026329275
-
Expression of cytokine-like genes JE and KC is increased during renal ischemia
-
Safirstein R, Megyesi J, Saggi SJ, Price PM, Poon M, et al. 1991. Expression of cytokine-like genes JE and KC is increased during renal ischemia. Am. J. Physiol. 261:F1095-101
-
(1991)
Am. J. Physiol.
, vol.261
-
-
Safirstein, R.1
Megyesi, J.2
Saggi, S.J.3
Price, P.M.4
Poon, M.5
-
60
-
-
0028007189
-
Interleukin-1 treatment increases neutrophils but not antioxidant enzyme activity or resistance to ischemia-reperfusion injury in rat kidneys
-
Guidot DM, Linas SL, Repine MJ, Shanley PF, Fisher HS, Repine JE. 1994. Interleukin-1 treatment increases neutrophils but not antioxidant enzyme activity or resistance to ischemia-reperfusion injury in rat kidneys. Inflammation 18:537-545
-
(1994)
Inflammation
, vol.18
, pp. 537-545
-
-
Guidot, D.M.1
Linas, S.L.2
Repine, M.J.3
Shanley, P.F.4
Fisher, H.S.5
Repine, J.E.6
-
61
-
-
0031944498
-
Role of IL-1 in renal ischemic reperfusion injury
-
Haq M, Norman J, Saba SR, Ramirez G, Rabb H. 1998. Role of IL-1 in renal ischemic reperfusion injury. J. Am. Soc. Nephrol. 9:614-619
-
(1998)
J. Am. Soc. Nephrol.
, vol.9
, pp. 614-619
-
-
Haq, M.1
Norman, J.2
Saba, S.R.3
Ramirez, G.4
Rabb, H.5
-
62
-
-
14344261020
-
Endogenous interleukin-6 enhances the renal injury, dysfunction, and inflammation caused by ischemia/reperfusion
-
Patel NS, Chatterjee PK, Di Paola R, Mazzon E, Britti D, et al. 2005. Endogenous interleukin-6 enhances the renal injury, dysfunction, and inflammation caused by ischemia/reperfusion. J. Pharmacol. Exp. Ther. 312:1170-1178
-
(2005)
J. Pharmacol. Exp. Ther.
, vol.312
, pp. 1170-1178
-
-
Patel, N.S.1
Chatterjee, P.K.2
Di Paola, R.3
Mazzon, E.4
Britti, D.5
-
63
-
-
3242767692
-
T cells as mediators in renal ischemia/reperfusion injury
-
Ysebaert DK, De Greef KE, De Beuf A, Van Rompay AR, Vercauteren S, et al. 2004. T cells as mediators in renal ischemia/reperfusion injury. Kidney Int. 66:491-496
-
(2004)
Kidney Int.
, vol.66
, pp. 491-496
-
-
Ysebaert, D.K.1
De Greef, K.E.2
De Beuf, A.3
Van Rompay, A.R.4
Vercauteren, S.5
-
64
-
-
3242772187
-
Ischemic acute renal failure: An inflammatory disease?
-
Bonventre JV, Zuk A. 2004. Ischemic acute renal failure: an inflammatory disease? Kidney Int. 66:480-485
-
(2004)
Kidney Int.
, vol.66
, pp. 480-485
-
-
Bonventre, J.V.1
Zuk, A.2
-
65
-
-
15044346796
-
Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: Role of macrophages
-
Day YJ, Huang L, Ye H, Linden J, Okusa MD. 2005. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages. Am. J. Physiol. Renal Physiol. 288:F722-31
-
(2005)
Am. J. Physiol. Renal Physiol.
, vol.288
-
-
Day, Y.J.1
Huang, L.2
Ye, H.3
Linden, J.4
Okusa, M.D.5
-
66
-
-
33646201785
-
Macrophages contribute to the initiation of ischaemic acute renal failure in rats
-
Jo SK, Sung SA, Cho WY,Go KJ, Kim HK. 2006. Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrol. Dial. Transplant. 21:1231-1239
-
(2006)
Nephrol. Dial. Transplant.
, vol.21
, pp. 1231-1239
-
-
Jo, S.K.1
Sung, S.A.2
Cho, W.Y.3
Go, K.J.4
Kim, H.K.5
-
67
-
-
26944431659
-
Proliferation of bone marrowderived cells contributes to regeneration after folic acid-induced acute tubular injury
-
Fang TC, Alison MR, Cook HT, Jeffery R,Wright NA, Poulsom R. 2005. Proliferation of bone marrowderived cells contributes to regeneration after folic acid-induced acute tubular injury. J. Am. Soc. Nephrol. 6:6
-
(2005)
J. Am. Soc. Nephrol.
, vol.6
, pp. 6
-
-
Fang, T.C.1
Alison, M.R.2
Cook, H.T.3
Jeffery Rwright, N.A.4
Poulsom, R.5
-
68
-
-
22144440464
-
Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells
-
Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, et al. 2005. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J. Clin. Investig. 115:1743-1755
-
(2005)
J. Clin. Investig.
, vol.115
, pp. 1743-1755
-
-
Duffield, J.S.1
Park, K.M.2
Hsiao, L.L.3
Kelley, V.R.4
Scadden, D.T.5
-
69
-
-
12144269603
-
Rare incorporation of bone marrow-derived cells into kidney after folic acid-induced injury
-
Szczypka MS, Westover AJ, Clouthier SG, Ferrara JL, Humes HD. 2005. Rare incorporation of bone marrow-derived cells into kidney after folic acid-induced injury. Stem Cells 23:44-54
-
(2005)
Stem Cells
, vol.23
, pp. 44-54
-
-
Szczypka, M.S.1
Westover, A.J.2
Clouthier, S.G.3
Ferrara, J.L.4
Humes, H.D.5
-
70
-
-
20044366561
-
Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues
-
Yokoo T, Ohashi T, Shen JS, Sakurai K, Miyazaki Y, et al. 2005. Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues. Proc. Natl. Acad. Sci. USA 102:3296-3300
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 3296-3300
-
-
Yokoo, T.1
Ohashi, T.2
Shen, J.S.3
Sakurai, K.4
Miyazaki, Y.5
-
71
-
-
36849009310
-
Renal and bone marrow cells fuse after renal ischemic injury
-
Li L, Truong P, Igarashi P, Lin F. 2007. Renal and bone marrow cells fuse after renal ischemic injury. J. Am. Soc. Nephrol. 18:3067-3077
-
(2007)
J. Am. Soc. Nephrol.
, vol.18
, pp. 3067-3077
-
-
Li, L.1
Truong, P.2
Igarashi, P.3
Lin, F.4
-
72
-
-
28844472099
-
In vivo genetic selection of renal proximal tubules
-
Held PK, Al-Dhalimy M,Willenbring H, Akkari Y, Jiang S, et al. 2006. In vivo genetic selection of renal proximal tubules. Mol. Ther. 13:49-58
-
(2006)
Mol. Ther.
, vol.13
, pp. 49-58
-
-
Held, P.K.1
Al-Dhalimy, M.2
Willenbring, H.3
Akkari, Y.4
Jiang, S.5
-
73
-
-
3042628474
-
Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure
-
Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, et al. 2004. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J. Am. Soc. Nephrol. 15:1794-1804
-
(2004)
J. Am. Soc. Nephrol.
, vol.15
, pp. 1794-1804
-
-
Morigi, M.1
Imberti, B.2
Zoja, C.3
Corna, D.4
Tomasoni, S.5
-
74
-
-
19544364818
-
Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury
-
Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, Camussi G. 2004. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int. J. Mol. Med. 14:1035-1041
-
(2004)
Int. J. Mol. Med.
, vol.14
, pp. 1035-1041
-
-
Herrera, M.B.1
Bussolati, B.2
Bruno, S.3
Fonsato, V.4
Romanazzi, G.M.5
Camussi, G.6
-
75
-
-
85133342094
-
Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms
-
Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. 2005. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am. J. Physiol. Renal Physiol. 15:15
-
(2005)
Am. J. Physiol. Renal Physiol.
, vol.15
, pp. 15
-
-
Togel, F.1
Hu, Z.2
Weiss, K.3
Isaac, J.4
Lange, C.5
Westenfelder, C.6
-
76
-
-
34548489620
-
Stromal cells protect against acute tubular injury via an endocrine effect
-
Bi B, Schmitt R, Israilova M, Nishio H, Cantley LG. 2007. Stromal cells protect against acute tubular injury via an endocrine effect. J. Am. Soc. Nephrol. 18:2486-2496
-
(2007)
J. Am. Soc. Nephrol.
, vol.18
, pp. 2486-2496
-
-
Bi, B.1
Schmitt, R.2
Israilova, M.3
Nishio, H.4
Cantley, L.G.5
-
77
-
-
34247854809
-
Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury
-
Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C. 2007. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am. J. Physiol. Renal Physiol. 292:F1626-35
-
(2007)
Am. J. Physiol. Renal Physiol.
, vol.292
-
-
Togel, F.1
Weiss, K.2
Yang, Y.3
Hu, Z.4
Zhang, P.5
Westenfelder, C.6
-
78
-
-
35848962732
-
Insulin-like growth factor-1 sustains stem cell mediated renal repair
-
Imberti B, Morigi M, Tomasoni S, Rota C, Corna D, et al. 2007. Insulin-like growth factor-1 sustains stem cell mediated renal repair. J. Am. Soc. Nephrol. 18:2921-2928
-
(2007)
J. Am. Soc. Nephrol.
, vol.18
, pp. 2921-2928
-
-
Imberti, B.1
Morigi, M.2
Tomasoni, S.3
Rota, C.4
Corna, D.5
-
79
-
-
55049087497
-
Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice
-
Morigi M, Introna M, Imberti B, Corna D, Abbate M, et al. 2008. Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice. Stem Cells 26:2075-2082
-
(2008)
Stem Cells
, vol.26
, pp. 2075-2082
-
-
Morigi, M.1
Introna, M.2
Imberti, B.3
Corna, D.4
Abbate, M.5
-
80
-
-
59949092665
-
Recruitment of podocytes from glomerular parietal epithelial cells
-
Appel D, Kershaw DB, Smeets B, Yuan G, Fuss A, et al. 2009. Recruitment of podocytes from glomerular parietal epithelial cells. J. Am. Soc. Nephrol. 20:333-343
-
(2009)
J. Am. Soc. Nephrol.
, vol.20
, pp. 333-343
-
-
Appel, D.1
Kershaw, D.B.2
Smeets, B.3
Yuan, G.4
Fuss, A.5
-
81
-
-
0032929050
-
The dysregulated podocyte phenotype: A novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy
-
Barisoni L, Kriz W, Mundel P, D'Agati V. 1999. The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J. Am. Soc. Nephrol. 10:51-61
-
(1999)
J. Am. Soc. Nephrol.
, vol.10
, pp. 51-61
-
-
Barisoni, L.1
Kriz, W.2
Mundel, P.3
D'Agati, V.4
-
82
-
-
0346103699
-
Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis
-
Moeller MJ, Soofi A, Hartmann I, Le HirM,Wiggins R, et al. 2004. Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis. J. Am. Soc. Nephrol. 15:61-67
-
(2004)
J. Am. Soc. Nephrol.
, vol.15
, pp. 61-67
-
-
Moeller, M.J.1
Soofi, A.2
Hartmann, I.3
Le Hirmwiggins, R.4
-
83
-
-
0026786946
-
Characterization of a simian virus 40-transformed human podocyte cell line producing type IV collagen and exhibiting polarized response to atrial natriuretic peptide
-
Ardaillou N, Lelongt B, Turner N, Piedagnel R, Baudouin B, et al. 1992. Characterization of a simian virus 40-transformed human podocyte cell line producing type IV collagen and exhibiting polarized response to atrial natriuretic peptide. J. Cell Physiol. 152:599-616
-
(1992)
J. Cell Physiol.
, vol.152
, pp. 599-616
-
-
Ardaillou, N.1
Lelongt, B.2
Turner, N.3
Piedagnel, R.4
Baudouin, B.5
-
84
-
-
0030733851
-
Induction of differentiation in cultured rat and human podocytes
-
Mundel P, Reiser J, Kriz W. 1997. Induction of differentiation in cultured rat and human podocytes. J. Am. Soc. Nephrol. 8:697-705
-
(1997)
J. Am. Soc. Nephrol.
, vol.8
, pp. 697-705
-
-
Mundel, P.1
Reiser, J.2
Kriz, W.3
-
85
-
-
29144490392
-
Podocyte depletion causes glomerulosclerosis: Diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene
-
Wharram BL, Goyal M, Wiggins JE, Sanden SK, Hussain S, et al. 2005. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J. Am. Soc. Nephrol. 16:2941-2952
-
(2005)
J. Am. Soc. Nephrol.
, vol.16
, pp. 2941-2952
-
-
Wharram, B.L.1
Goyal, M.2
Wiggins, J.E.3
Sanden, S.K.4
Hussain, S.5
-
86
-
-
33645266951
-
Podocyte hypertrophy, "adaptation," and " decompensation" associated with glomerular enlargement and glomerulosclerosis in the aging rat: Prevention by calorie restriction
-
Wiggins JE, Goyal M, Sanden SK, Wharram BL, Shedden KA, et al. 2005. Podocyte hypertrophy, "adaptation," and "decompensation" associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction. J. Am. Soc. Nephrol. 16:2953-2966
-
(2005)
J. Am. Soc. Nephrol.
, vol.16
, pp. 2953-2966
-
-
Wiggins, J.E.1
Goyal, M.2
Sanden, S.K.3
Wharram, B.L.4
Shedden, K.A.5
-
87
-
-
0026547448
-
The parietal podocyte: A study of the vascular pole of the human glomerulus
-
Gibson IW, Downie I, Downie TT, Han SW, More IA, Lindop GB. 1992. The parietal podocyte: a study of the vascular pole of the human glomerulus. Kidney Int. 41:211-214
-
(1992)
Kidney Int.
, vol.41
, pp. 211-214
-
-
Gibson, I.W.1
Downie, I.2
Downie, T.T.3
Han, S.W.4
More, I.A.5
Lindop, G.B.6
-
89
-
-
59949101434
-
Regeneration of glomerular podocytes by human renal progenitors
-
Ronconi E, Sagrinati C, Angelotti ML, Lazzeri E, Mazzinghi B, et al. 2009. Regeneration of glomerular podocytes by human renal progenitors. J. Am. Soc. Nephrol. 20:322-332
-
(2009)
J. Am. Soc. Nephrol.
, vol.20
, pp. 322-332
-
-
Ronconi, E.1
Sagrinati, C.2
Angelotti, M.L.3
Lazzeri, E.4
Mazzinghi, B.5
-
90
-
-
33646561825
-
Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease
-
Sugimoto H, Mundel TM, Sund M, Xie L, Cosgrove D, Kalluri R. 2006. Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc. Natl. Acad. Sci. USA 103:7321-7326
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 7321-7326
-
-
Sugimoto, H.1
Mundel, T.M.2
Sund, M.3
Xie, L.4
Cosgrove, D.5
Kalluri, R.6
-
91
-
-
33746922757
-
Bone marrow transplantation can attenuate the progression of mesangial sclerosis
-
Guo JK, Schedl A, Krause DS. 2006. Bone marrow transplantation can attenuate the progression of mesangial sclerosis. Stem Cells 24:406-415
-
(2006)
Stem Cells
, vol.24
, pp. 406-415
-
-
Guo, J.K.1
Schedl, A.2
Krause, D.S.3
-
92
-
-
33750547298
-
Bone marrow-derived cells contribute to podocyte regeneration and amelioration of renal disease in a mouse model of Alport syndrome
-
Prodromidi EI, Poulsom R, Jeffery R, Roufosse CA, Pollard PJ, et al. 2006. Bone marrow-derived cells contribute to podocyte regeneration and amelioration of renal disease in a mouse model of Alport syndrome. Stem Cells 24:2448-2455
-
(2006)
Stem Cells
, vol.24
, pp. 2448-2455
-
-
Prodromidi, E.I.1
Poulsom, R.2
Jeffery, R.3
Roufosse, C.A.4
Pollard, P.J.5
-
93
-
-
35948986294
-
Intra renal arterial injection of autologous mesenchymal stem cells in an ovine model in the postischemic kidney
-
Behr L, Hekmati M, Fromont G, Borenstein N, Noel LH, et al. 2007. Intra renal arterial injection of autologous mesenchymal stem cells in an ovine model in the postischemic kidney. Nephron Physiol. 107:p65-76
-
(2007)
Nephron Physiol.
, vol.107
-
-
Behr, L.1
Hekmati, M.2
Fromont, G.3
Borenstein, N.4
Noel, L.H.5
-
94
-
-
0037370325
-
Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases
-
Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, et al. 2003. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Investig. 111:707-716
-
(2003)
J. Clin. Investig.
, vol.111
, pp. 707-716
-
-
Eremina, V.1
Sood, M.2
Haigh, J.3
Nagy, A.4
Lajoie, G.5
-
95
-
-
0037373006
-
Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia
-
Maynard SE, Min JY, Merchan J, Lim KH, Li J, et al. 2003. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Investig. 111:649-658
-
(2003)
J. Clin. Investig.
, vol.111
, pp. 649-658
-
-
Maynard, S.E.1
Min, J.Y.2
Merchan, J.3
Lim, K.H.4
Li, J.5
-
96
-
-
40849130173
-
VEGF inhibition and renal thrombotic microangiopathy
-
Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, et al. 2008. VEGF inhibition and renal thrombotic microangiopathy. N. Engl. J. Med. 358:1129-1136
-
(2008)
N. Engl. J. Med.
, vol.358
, pp. 1129-1136
-
-
Eremina, V.1
Jefferson, J.A.2
Kowalewska, J.3
Hochster, H.4
Haas, M.5
-
97
-
-
34250374471
-
Role of the VEGF-A signaling pathway in the glomerulus: Evidence for crosstalk between components of the glomerular filtration barrier
-
Eremina V, Baelde HJ, Quaggin SE. 2007. Role of the VEGF-a signaling pathway in the glomerulus: evidence for crosstalk between components of the glomerular filtration barrier. Nephron Physiol. 106:p32-37
-
(2007)
Nephron Physiol.
, vol.106
-
-
Eremina, V.1
Baelde, H.J.2
Quaggin, S.E.3
-
98
-
-
38349017084
-
Functional symbiosis between endothelium and epithelial cells in glomeruli
-
Hirschberg R,Wang S, Mitu GM. 2008. Functional symbiosis between endothelium and epithelial cells in glomeruli. Cell Tissue Res. 331:485-493
-
(2008)
Cell Tissue Res.
, vol.331
, pp. 485-493
-
-
Hirschberg, R.1
Wang, S.2
Mitu, G.M.3
-
99
-
-
0031019745
-
Isolation of putative progenitor endothelial cells for angiogenesis
-
Asahara T, Murohara T, Sullivan A, Silver M,Van Der Zee R, et al. 1997. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964-967
-
(1997)
Science
, vol.275
, pp. 964-967
-
-
Asahara, T.1
Murohara, T.2
Sullivan, A.3
Silver, M.4
Van Der Zee, R.5
-
100
-
-
44449109955
-
Vascular repair by endothelial progenitor cells
-
Zampetaki A, Kirton JP, Xu Q. 2008. Vascular repair by endothelial progenitor cells. Cardiovasc. Res. 78:413-421
-
(2008)
Cardiovasc. Res.
, vol.78
, pp. 413-421
-
-
Zampetaki, A.1
Kirton, J.P.2
Xu, Q.3
-
101
-
-
33745345861
-
Dynamics of mobilization and homing of endothelial progenitor cells after acute renal ischemia: Modulation by ischemic preconditioning
-
Patschan D, Krupincza K, Patschan S, Zhang Z, Hamby C, Goligorsky MS. 2006. Dynamics of mobilization and homing of endothelial progenitor cells after acute renal ischemia: modulation by ischemic preconditioning. Am. J. Physiol. Renal Physiol. 291:F176-85
-
(2006)
Am. J. Physiol. Renal Physiol.
, vol.291
-
-
Patschan, D.1
Krupincza, K.2
Patschan, S.3
Zhang, Z.4
Hamby, C.5
Goligorsky, M.S.6
-
102
-
-
17744378768
-
Bone marrow cells contribute to regeneration of damaged glomerular endothelial cells
-
Ikarashi K, Li B, Suwa M, Kawamura K, Morioka T, et al. 2005. Bone marrow cells contribute to regeneration of damaged glomerular endothelial cells. Kidney Int. 67:1925-1933
-
(2005)
Kidney Int.
, vol.67
, pp. 1925-1933
-
-
Ikarashi, K.1
Li, B.2
Suwa, M.3
Kawamura, K.4
Morioka, T.5
-
103
-
-
61349167743
-
Endothelial progenitor cells restore renal function in chronic experimental renovascular disease
-
Chade AR, Zhu X, Lavi R, Krier JD, Pislaru S, et al. 2009. Endothelial progenitor cells restore renal function in chronic experimental renovascular disease. Circulation 119:547-557
-
(2009)
Circulation
, vol.119
, pp. 547-557
-
-
Chade, A.R.1
Zhu, X.2
Lavi, R.3
Krier, J.D.4
Pislaru, S.5
-
104
-
-
77956978656
-
Bone marrow-derived cells do not repair endothelium in a mouse model of chronic endothelial cell dysfunction
-
Perry TE, Song M, Despres DJ, Kim SM, San H, et al. 2009. Bone marrow-derived cells do not repair endothelium in a mouse model of chronic endothelial cell dysfunction. Cardiovasc. Res. 21:21
-
(2009)
Cardiovasc. Res.
, vol.21
, pp. 21
-
-
Perry, T.E.1
Song, M.2
Despres, D.J.3
Kim, S.M.4
San, H.5
-
105
-
-
38149090050
-
How do mesangial and endothelial cells form the glomerular tuft?
-
Vaughan MR, Quaggin SE. 2008. How do mesangial and endothelial cells form the glomerular tuft? J. Am. Soc. Nephrol. 19:24-33
-
(2008)
J. Am. Soc. Nephrol.
, vol.19
, pp. 24-33
-
-
Vaughan, M.R.1
Quaggin, S.E.2
-
106
-
-
67449083682
-
The mesangial cell revisited: No cell is an island
-
Schlondorff D, Banas B. 2009. The mesangial cell revisited: no cell is an island. J. Am. Soc. Nephrol. 20:1179-1187
-
(2009)
J. Am. Soc. Nephrol.
, vol.20
, pp. 1179-1187
-
-
Schlondorff, D.1
Banas, B.2
-
107
-
-
0030752624
-
Extraglomerular origin of the mesangial cell after injury. A new role of the juxtaglomerular apparatus
-
Hugo C, Shankland SJ, Bowen-Pope DF, Couser WG, Johnson RJ. 1997. Extraglomerular origin of the mesangial cell after injury. A new role of the juxtaglomerular apparatus. J. Clin. Investig. 100:786-794
-
(1997)
J. Clin. Investig.
, vol.100
, pp. 786-794
-
-
Hugo, C.1
Shankland, S.J.2
Bowen-Pope, D.F.3
Couser, W.G.4
Johnson, R.J.5
-
108
-
-
0037443544
-
Hematopoietic origin of glomerular mesangial cells
-
Masuya M, Drake CJ, Fleming PA, Reilly CM, Zeng H, et al. 2003. Hematopoietic origin of glomerular mesangial cells. Blood 101:2215-2218
-
(2003)
Blood
, vol.101
, pp. 2215-2218
-
-
Masuya, M.1
Drake, C.J.2
Fleming, P.A.3
Reilly, C.M.4
Zeng, H.5
-
109
-
-
0029958876
-
Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo
-
Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. 1996. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183:1797-1806
-
(1996)
J. Exp. Med.
, vol.183
, pp. 1797-1806
-
-
Goodell, M.A.1
Brose, K.2
Paradis, G.3
Conner, A.S.4
Mulligan, R.C.5
-
110
-
-
0034795256
-
The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the sidepopulation phenotype
-
Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, et al. 2001. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the sidepopulation phenotype. Nat. Med. 7:1028-1034
-
(2001)
Nat. Med.
, vol.7
, pp. 1028-1034
-
-
Zhou, S.1
Schuetz, J.D.2
Bunting, K.D.3
Colapietro, A.M.4
Sampath, J.5
-
112
-
-
22344432188
-
Musculin/MyoR is expressed in kidney side population cells and can regulate their function
-
Hishikawa K, Marumo T, Miura S, Nakanishi A, Matsuzaki Y, et al. 2005. Musculin/MyoR is expressed in kidney side population cells and can regulate their function. J. Cell Biol. 169:921-1018
-
(2005)
J. Cell Biol.
, vol.169
, pp. 921-1018
-
-
Hishikawa, K.1
Marumo, T.2
Miura, S.3
Nakanishi, A.4
Matsuzaki, Y.5
-
113
-
-
10444259877
-
Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration
-
Kofidis T, de Bruin JL, Yamane T, Balsam LB, Lebl DR, et al. 2004. Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells 22:1239-1245
-
(2004)
Stem Cells
, vol.22
, pp. 1239-1245
-
-
Kofidis, T.1
De Bruin, J.L.2
Yamane, T.3
Balsam, L.B.4
Lebl, D.R.5
-
114
-
-
57649128308
-
Generation of insulin-secreting islet-like clusters from human skin fibroblasts
-
Tateishi K, He J, Taranova O, Liang G, D'Alessio AC, Zhang Y. 2008. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J. Biol. Chem. 283:31601-31607
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 31601-31607
-
-
Tateishi, K.1
He, J.2
Taranova, O.3
Liang, G.4
D'Alessio, A.C.5
Zhang, Y.6
-
115
-
-
24644517162
-
Wnt4-transformed mouse embryonic stem cells differentiate into renal tubular cells
-
DOI 10.1016/j.bbrc.2005.08.136, PII S0006291X05018383
-
Kobayashi T, Tanaka H, Kuwana H, Inoshita S, Teraoka H, et al. 2005. Wnt4-transformed mouse embryonic stem cells differentiate into renal tubular cells. Biochem. Biophys. Res. Commun. 336:585-595 (Pubitemid 41267268)
-
(2005)
Biochemical and Biophysical Research Communications
, vol.336
, Issue.2
, pp. 585-595
-
-
Kobayashi, T.1
Tanaka, H.2
Kuwana, H.3
Inoshita, S.4
Teraoka, H.5
Sasaki, S.6
Terada, Y.7
-
116
-
-
33644849158
-
Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia
-
Kim D, Dressler GR. 2005. Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia. J. Am. Soc. Nephrol. 16:3527-3534
-
(2005)
J. Am. Soc. Nephrol.
, vol.16
, pp. 3527-3534
-
-
Kim, D.1
Dressler, G.R.2
-
117
-
-
33644862307
-
Cells differentiated from mouse embryonic stem cells via embryoid bodies express renal marker molecules
-
Kramer J, Steinhoff J, Klinger M, Fricke L, Rohwedel J. 2006. Cells differentiated from mouse embryonic stem cells via embryoid bodies express renal marker molecules. Differentiation 74:91-104
-
(2006)
Differentiation
, vol.74
, pp. 91-104
-
-
Kramer, J.1
Steinhoff, J.2
Klinger, M.3
Fricke, L.4
Rohwedel, J.5
-
118
-
-
34249087679
-
In vitro differentiation of murine embryonic stem cells toward a renal lineage
-
Bruce SJ, Rea RW, Steptoe AL, Busslinger M, Bertram JF, Perkins AC. 2007. In vitro differentiation of murine embryonic stem cells toward a renal lineage. Differentiation 75:337-349
-
(2007)
Differentiation
, vol.75
, pp. 337-349
-
-
Bruce, S.J.1
Rea, R.W.2
Steptoe, A.L.3
Busslinger, M.4
Bertram, J.F.5
Perkins, A.C.6
-
119
-
-
34249867136
-
Mouse embryonic stem cell-derived embryoid bodies generate progenitors that integrate long term into renal proximal tubules in vivo
-
Vigneau C, Polgar K, Striker G, Elliott J, Hyink D, et al. 2007. Mouse embryonic stem cell-derived embryoid bodies generate progenitors that integrate long term into renal proximal tubules in vivo. J. Am. Soc. Nephrol. 18:1709-1720
-
(2007)
J. Am. Soc. Nephrol.
, vol.18
, pp. 1709-1720
-
-
Vigneau, C.1
Polgar, K.2
Striker, G.3
Elliott, J.4
Hyink, D.5
|